1 Two Coupled Oscillators

1.1

\[\hat{H}\psi_{00} = \left[A + \epsilon \left(\hat{a}_1^\dagger \hat{a}_1 + \hat{a}_2^\dagger \hat{a}_2 \right) - J \left(\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1 \right) \right] \psi_{00} \]

\[= A\psi_{00} + \epsilon \hat{a}_1^\dagger \hat{a}_1 \psi_{00} + \epsilon \hat{a}_2^\dagger \hat{a}_2 \psi_{00} - J\hat{a}_1^\dagger \hat{a}_2 \psi_{00} - J\hat{a}_2^\dagger \hat{a}_1 \psi_{00} \]

\[= A\psi_{00} \]

This means that \(\psi_{00} \) is an eigenstate of \(\hat{H} \), with eigenvalue \(A \).

1.2

\[\psi_{10} = a_1^\dagger \psi_{00}. \]

We will want to see if \(\hat{H}\psi_{10} = \lambda \psi_{10} \) for some \(\lambda \). Before jumping in, note that:

\[\hat{a}_1\psi_{10} = a_1a_1^\dagger \psi_{00} = \left(1 + a_1^\dagger a_1 \right) \psi_{00} = \psi_{00} \]

\[\hat{a}_2\psi_{10} = a_2a_1^\dagger \psi_{00} = a_1^\dagger a_2 \psi_{00} = 0. \]

Now:

\[\hat{H}\psi_{10} = A\psi_{10} + \epsilon \hat{a}_1^\dagger \hat{a}_1 \psi_{10} + \epsilon \hat{a}_2^\dagger \hat{a}_2 \psi_{10} - J\hat{a}_1^\dagger \hat{a}_2 \psi_{10} - J\hat{a}_2^\dagger \hat{a}_1 \psi_{10} \]

\[= (A + \epsilon) \psi_{10} - J\hat{a}_2^\dagger \psi_{00} \]

\[= (A + \epsilon) \psi_{10} - J\psi_{01}. \]

\(\psi_{10} \) is therefore not an eigenstate of the Hamiltonian: a particle initially in state \(\psi_{10} \) will evolve in to a linear combination of \(\psi_{01} \) and \(\psi_{10} \).

1.3

\[i\partial_t \psi = \hat{H}\psi \]

\[= a(t)\hat{H}\psi_{10} + b(t)\hat{H}\psi_{01}. \]
We found $\hat{H}\psi_{10}$ already. By symmetry, we can see that $\hat{H}\psi_{01}$ is the same as the expression for ψ_{10} but with the labels 1 and 0 swapped:

$$\hat{H}\psi_{01} = (A + \epsilon)\psi_{01} - J\psi_{10}. \quad (12)$$

Therefore:

$$i\partial_t\psi = \hat{H}\psi$$

$$= [a(t) (A + \epsilon) - Jb(t)] \psi_{10} + [b(t) (A + \epsilon) - Ja(t)] \psi_{01}. \quad (14)$$

By isolating coefficients for ψ_{10} and ψ_{01} (which are orthonormal), we can extract the two first-order differential equations:

$$i\hbar\partial_t a(t) = (A + \epsilon) a(t) - Jb(t) \quad (15)$$

$$i\hbar\partial_t b(t) = (A + \epsilon) b(t) - Ja(t). \quad (16)$$

The simplest way to solve this, as with the ammonia molecule, is to find the eigenvectors and eigenvalues of the Hamiltonian matrix.

1.4

Let me write the Hamiltonian in four terms:

$$\hat{H} = A + \epsilon\hat{N} - J \left(\hat{a}_1^\dagger\hat{a}_2 + \hat{a}_2^\dagger\hat{a}_1 \right). \quad (17)$$

Clearly \hat{N} commutes with the first two terms, so let us focus on the last two:

$$\left[\hat{N}, \hat{a}_1^\dagger\hat{a}_2 \right] = \left[\hat{N}_1, a_1^\dagger a_2 \right] + \left[\hat{N}_2, a_1^\dagger a_2 \right]$$

$$= a_1^\dagger a_2 - a_1^\dagger a_2$$

$$= 0. \quad (20)$$

This is because the operator $\hat{a}_1^\dagger\hat{a}_2$ increases particle number 1 by one, and decreases particle number 2 by one, so that the sum of the two particle numbers is conserved. Similarly for the last term. Therefore, $\left[\hat{N}, \hat{H} \right] = 0$.

2 Magnons

2.1

$$\mathbf{S}_i \cdot \mathbf{S}_{i+1} = S^x_i S^x_{i+1} + S^y_i S^y_{i+1} + S^z_i S^z_{i+1}. \quad (21)$$

Now, recall that:

$$S^x = (S^+ + S^-)/2 \quad (22)$$

$$S^y = -i (S^+ - S^-)/2. \quad (23)$$

2
If your forget these as I did, one way to remember is to recall the matrix forms:

\[
S^x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad S^y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad S^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad S^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.
\] (24)

It follows that:

\[
S_i \cdot S_{i+1} = \frac{1}{4} (S^+_i S^+_{i+1} + S^-_i S^-_{i+1} + S^+_i S^-_{i+1} + S^-_i S^+_{i+1})
- \frac{1}{4} (S^+_i S^-_{i+1} + S^-_i S^+_{i+1} - S^+_i S^-_{i+1} - S^-_i S^+_{i+1}) + S^z_i S^z_{i+1}
= \frac{1}{2} (S^+_i S^+_{i+1} + S^-_i S^-_{i+1}) + S^z_i S^z_{i+1}.
\] (25)

2.2

The terms in the operator \((S^+_i S^-_{i+1} + S^-_i S^+_{i+1})/2\) raises the spin on one site and lowers the spin on a neighbouring site. It will therefore destroy a state when it acts on two neighbouring sites with the same spin. In other words

\[
\frac{1}{2} \sum_i (S^+_i S^-_{i+1} + S^-_i S^+_{i+1}) |j\rangle = \frac{1}{2} \left(S^+_{j-1} S^-_j + S^-_j S^+_{j+1} \right) |j\rangle = \frac{|j+1\rangle + |j-1\rangle}{2},
\] (28)

and so this part of the Hamiltonian lowers the spin on site \(j\), while raising it on the neighbouring sites. The part of the Hamiltonian given by \(\sum_i S^z_i S^z_{i+1}\) will change the state only by a multiplicative constant, since all of the sites are in eigenstates of the \(S^z\) operator. To figure out what this multiplicative constant will be, note that \(S^z_i S^z_{i+1} = 1/4\) if both spins \(i\) and \(i+1\) are in the same direction, and \(S^z_i S^z_{i+1} = -1/4\) if the two spins are in opposite directions. Therefore, \(\sum_i S^z_i S^z_{i+1} |j\rangle = (n-3)/4 - 2/4,\) and:

\[
H |j\rangle = -J \sum_{i=1}^{n-1} S_i \cdot S_{i+1} |j\rangle = -\frac{J}{2} (|j+1\rangle + |j-1\rangle) - J \frac{n-5}{4} |j\rangle
\] (29)

2.3

Writing the state vector for a generic ‘one-particle’ state \(|\psi\rangle = \sum_i c_i |i\rangle\), or as a column vector:

\[
|\psi\rangle = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix},
\] (30)
the Hamiltonian becomes:

\[
H = \frac{-J}{4} \begin{pmatrix}
 n-5 & 2 & 0 & 0 \\
 2 & n-5 & 2 & 0 \\
 0 & 2 & n-5 & 2 \\
 0 & 0 & 2 & n-5 \\
\vdots & & & \ddots
\end{pmatrix}.
\] (31)

An upward-pointing spin will travel backwards and forwards along the spin-chain like a free particle moving in one dimension. ‘Really’, the particles are the stationary sites, and their spins are behaving collectively. But this collective motion of spins has all the properties of a particle: it has a mass, a momentum, quantized energy. It is most usefully thought of as a particle.

3 Parameters in our model

The Hamiltonian can be written as:

\[
H = K + V_\kappa + V_\gamma
\]

(32)

3.1 \(K\)

\[
K = \sum_j \frac{p_j^2}{2m}
\]

(33)

\[
= -\frac{\hbar^2}{4d^2m} \sum_j \left[(a_j - a_j^\dagger) - \alpha (a_{j+1} - a_{j+1}^\dagger + a_{j-1} - a_{j-1}^\dagger) \right]^2
\]

(34)

\[
= -\frac{\hbar^2}{4d^2m} \sum_j \left[(a_j - a_j^\dagger)^2 - \alpha (a_j - a_j^\dagger) (a_{j+1} - a_{j+1}^\dagger + a_{j-1} - a_{j-1}^\dagger) \right.
\]

\[
- \alpha (a_{j+1} - a_{j+1}^\dagger + a_{j-1} - a_{j-1}^\dagger) (a_j - a_j^\dagger) + \mathcal{O} (\alpha^2)
\]

\[
= -\frac{\hbar^2}{4d^2m} \sum_j \left[(a_ja_j + a_j^\dagger a_j^\dagger) - (a_ja_j + a_j^\dagger a_j) - 2\alpha (a_j - a_j^\dagger) (a_{j+1} - a_{j+1}^\dagger + a_{j-1} - a_{j-1}^\dagger) \right].
\]

(36)
The term proportional to α can be written:

$$\alpha \text{ term } = \frac{\hbar^2}{8d^2m} \sum_j 2\alpha \left(a_j - a_j^\dagger \right) \left(a_{j+1} - a_{j+1}^\dagger + a_{j-1} - a_{j-1}^\dagger \right)$$

\begin{align*}
\text{(37)} &= \frac{\alpha \hbar^2}{2d^2m} \left[\sum_j \left(a_j - a_j^\dagger \right) \left(a_{j+1} - a_{j+1}^\dagger \right) + \sum_j \left(a_j - a_j^\dagger \right) \left(a_{j-1} - a_{j-1}^\dagger \right) \right] \\
\text{(38)} &= \frac{\alpha \hbar^2}{2d^2m} \left[\sum_j \left(a_j - a_j^\dagger \right) \left(a_{j+1} - a_{j+1}^\dagger \right) + \sum_j \left(a_{j+1} - a_{j+1}^\dagger \right) \left(a_j - a_j^\dagger \right) \right] \\
\text{(39)} &= \frac{\alpha \hbar^2}{2d^2m} \sum_j \left(a_j - a_j^\dagger \right) \left(a_{j+1} - a_{j+1}^\dagger \right) \\
\text{(40)} &= \sum_j \frac{\alpha \hbar^2}{d^2m} \left[\left(a_j a_{j+1} + a_j^\dagger a_{j+1}^\dagger \right) - \left(a_j a_{j+1} + a_j^\dagger a_{j+1}^\dagger \right) \right]
\end{align*}

We have made liberal use of the relation $[a_{j+1}, a_j] = 0$. Therefore, we have:

$$A_K = \frac{\hbar^2}{4md^2}, \quad B_K = -\frac{\hbar^2 \alpha}{d^2m}, \quad C_K = -\frac{\hbar^2}{4d^2m}, \quad D_K = \frac{\alpha \hbar^2}{d^2m}. \quad (42)$$

3.2 V_κ

\begin{align*}
V_\kappa &= \sum_j \frac{\kappa x_j^2}{2} \\
\text{(43)} &= \frac{\kappa d^2}{4} \sum_j \left[\left(a_j + a_j^\dagger \right) - \alpha \left(a_{j+1} + a_{j+1}^\dagger + a_{j-1} + a_{j-1}^\dagger \right) \right]^2 \\
\text{(44)} &= \frac{\kappa d^2}{4} \sum_j \left[\left(a_j + a_j^\dagger \right)^2 + 2\alpha \left(a_j + a_j^\dagger \right) \left(a_{j+1} + a_{j+1}^\dagger + a_{j-1} + a_{j-1}^\dagger \right) + \mathcal{O}(\alpha^2) \right] \\
\text{(45)} &= \frac{\kappa d^2}{4} \sum_j \left[\left(a_j a_{j+1} + a_j^\dagger a_{j+1}^\dagger \right) + \left(a_j a_j^\dagger + a_j^\dagger a_j \right) + 4\alpha \left(a_j a_{j+1} + a_j^\dagger a_{j+1}^\dagger \right) + 4\alpha \left(a_j a_{j+1} + a_j^\dagger a_{j+1} \right) \right].
\end{align*}

Therefore, we have:

$$K_{V_\kappa} = \frac{\kappa d^2}{4}, \quad B_{V_\kappa} = \kappa d^2 \alpha, \quad C_{V_\kappa} = \frac{\kappa d^2}{4}, \quad D_{V_\kappa} = \kappa d^2 \alpha. \quad (47)$$
3.3 \(V_γ \)

\[
V_γ = \sum_j \frac{γ}{2} (x_{j+1} - x_j)^2
\]

\[
= \frac{κd^2}{4} \sum_j \left(a_{j+1} + a_{j+1}^\dagger - a_j - a_j^\dagger + O(α^2) \right)^2
\]

\[
= \frac{κd^2}{2} \sum_j \left[\left(a_j a_j^\dagger + a_j^\dagger a_j \right) - \left(a_{j+1} a_j + a_j a_{j+1} \right) + \left(a_j a_j^\dagger + a_j^\dagger a_j \right) \right] (50)
\]

Therefore, we have:

\[
K_{V_γ} = \frac{γd^2}{2}, \quad B_{V_γ} = -\frac{γd^2}{2}, \quad C_{V_γ} = \frac{γd^2}{2}, \quad D_{V_γ} = -\frac{γd^2}{2}. \quad (51)
\]

4 Classical Sound Waves

4.1

The two equations are:

\[
-\text{i}mωu = v
\]

\[
-\text{i}ωv = -u \left(κ + γ \left(2 - e^{ika} - e^{-ika} \right) \right) = -u \left(κ + 2γ \left(1 - \cos (ka) \right) \right). \quad (53)
\]

Plugging \(u \) from the first into the second gives:

\[
-\text{i}ωv = \frac{v}{mωi} \left(κ + 2γ \left(1 - \cos (ka) \right) \right) \quad (54)
\]

\[
ω^2 = \frac{1}{m} \left(κ + 2γ \left(1 - \cos (ka) \right) \right) \quad (55)
\]

4.2

For small \(k \):

\[
ω^2 = \frac{1}{m} \left(κ + γk^2 a^2 \right) \quad (56)
\]

\[
E^2 = ℏω^2 = \frac{h^2κ}{m} + \frac{γa^2}{m} h^2 k^2. \quad (57)
\]

Now, we know that \(E^2 = p^2c^2 + M^2c^4 = h^2k^2c^2 + M^2c^4 \) (typo in question sheet), and so from the second term we see that:

\[
c^2 = \frac{γa^2}{m} \quad (58)
\]

and the first term gives us:

\[
M^2 = \frac{ℏ^2mk}{γ^2a^4}. \quad (59)
\]

This mass gap means that there is a minimum energy we need to put in to excite any optical modes, as opposed to say, photons which can be produced with arbitrarily small energy (and arbitrarily large wavelength).