Scalar QED3 Reference Sheet

$$
\begin{array}{rlrl}
S_{t} & =F_{x y}=\partial_{x} A_{y}-\partial_{y} A_{x} & & \text { Magnetic field } \\
S_{y} & =F_{t x}=\partial_{t} A_{x}-\partial_{x} A_{t} & & \text { Electric field } \\
S_{x} & =F_{y t}=\partial_{y} A_{t}-\partial_{t} A_{y} . &
\end{array}
$$

$\left(\partial_{t}-i A_{t}\right)^{2} \phi-\left(\partial_{x}-i A_{x}\right)^{2} \phi-\left(\partial_{y}-i A_{y}\right)^{2} \phi+m^{2} \phi=0 . \quad$ Klein-Gordon field

Maxwell's Equations

$$
\begin{aligned}
& \partial_{x} S_{y}-\partial_{y} S_{x}= \frac{\phi^{*}\left(\partial_{t}-i A_{t}\right) \phi-\phi\left(\partial_{t}+i A_{t}\right) \phi^{*}}{2 i} \longleftarrow \nabla \cdot E=\frac{\rho}{\epsilon_{0}} \\
&-\partial_{y} S_{t}-\partial_{t} S_{y}=-\frac{\phi^{*}\left(\partial_{x}-i A_{x}\right) \phi-\phi\left(\partial_{x}+i A_{x}\right) \phi^{*}}{2 i} \\
& \partial_{t} S_{x}+\partial_{x} S_{t}=-\frac{\phi^{*}\left(\partial_{y}-i A_{y}\right) \phi-\phi\left(\partial_{y}+i A_{y}\right) \phi^{*}}{2 i} \\
& \nabla \times B-\epsilon_{0} \partial_{t} E=\mu_{0} J \\
& \partial_{t} S_{t}+\partial_{x} S_{x}+\partial_{y} S_{y}=0, \longleftarrow \nabla \times E=-\partial_{t} B .
\end{aligned}
$$

Maxwell's Equations in terms of potentials

$$
\begin{aligned}
\partial_{t}\left[\partial_{x} A_{x}+\partial_{y} A_{y}\right]-\left(\partial_{x}^{2}+\partial_{y}^{2}\right) A_{t} & =\frac{\phi^{*} \partial_{t} \phi-\phi \partial_{t} \phi^{*}}{2 i}-|\phi|^{2} A_{t} \\
\partial_{x}\left[-\partial_{y} A_{y}+\partial_{t} A_{t}\right]-\left(-\partial_{y}^{2}+\partial_{t}^{2}\right) A_{x} & =-\frac{\phi^{*} \partial_{x} \phi-\phi \partial_{x} \phi^{*}}{2 i}+|\phi|^{2} A_{x} \\
\partial_{y}\left[\partial_{t} A_{t}-\partial_{x} A_{x}\right]-\left(\partial_{t}^{2}-\partial_{x}^{2}\right) A_{y} & =-\frac{\phi^{*} \partial_{y} \phi-\phi \partial_{y} \phi^{*}}{2 i}+|\phi|^{2} A_{y}
\end{aligned}
$$

Linearized equations for Gauge Fields

$$
\left(\begin{array}{ccc}
\omega^{2}-k_{y}^{2} & k_{x} k_{y} & \omega k_{x} \\
k_{x} k_{y} & \omega^{2}-k_{x}^{2} & \omega k_{y} \\
\omega k_{x} & \omega k_{y} & k_{x}^{2}+k_{y}^{2}
\end{array}\right)\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{t}
\end{array}\right)=0
$$

Linearized equations for Gauge Fields in Symmetry broken phase

$$
\left(\begin{array}{cccc}
\omega^{2}-k_{y}^{2}-\phi_{0}^{2} & k_{x} k_{y} & \omega k_{x} & i k_{x} \phi_{0} \\
k_{x} k_{y} & \omega^{2}-k_{x}^{2}-\phi_{0}^{2} & \omega k_{y} & i k_{y} \phi_{0} \\
\omega k_{x} & \omega k_{y} & k_{x}^{2}+k_{y}^{2}+\phi_{0}^{2} & i \omega \phi_{0} \\
-i k_{x} \phi_{0} & -i k_{y} \phi_{0} & -i \omega \phi_{0} & \omega^{2}-k^{2}
\end{array}\right)\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{t} \\
b
\end{array}\right)=0
$$

