
P3317 HW from Lecture 7+8 and Recitation 4

Due Friday Tuesday September 25

Problem 1. In class we argued that an ammonia atom in an electric field can be modeled by a

two-level system, described by a Schrodinger equation

i~∂t

(
ψL

ψR

)
=

(
E0 + ε −∆

−∆ E0 − ε

)(
ψL

ψR

)
. (1)

The constant E0 plays no role in the dynamics: this is supposed to represent the energy when the

Nitrogen atom is at one of its two potential minima. The term ∆ accounts for tunneling, and ε is

proportional to the electric field applied along the symmetry axis of the molecule.

Experiments show good agreement with this model, and the most accurate way to determine ε and

∆ is not from a theoretical calculation, but by fitting the prediction of this model to experiment.

One finds ∆ = 10−4eV, and ε = µE , where E is the electric field strength. The proportionality

constant is the electric dipole moment, µ = 1.6 debye. A debye is the CGS unit for electric dipole

moments: 1 debye= 3.3 × 10−30Cm. A debye is a typical electric dipole moment for a molecule –

it is equal to the charge of the electron times a distance of roughly 0.39 Bohr.

1.1. Derive an expression for the energy eigenvalues as a function of E0, ∆, and ε. Make a sketch

of Energy vs ε for fixed E0 and ∆. Please do not substitute in numbers – I just want to know the

shape of the curve. Please do label the axes though. Unlike “graphing” problems, a hand-drawn

sketch is fine here (though a computer generated one is also fine).

As an aside, you should see that one state is “high field seeking” – meaning its energy is lowest

in regions of large field, while the other is “low field seeking”. This property is what is used for

creating an inverted population for an ammonia Maser.

1.2. Cavities vary greatly in the fields they contain. Some of the highest intensity microwave

cavities are used in particle accelerators. For example, the next generation “Energy Recovering

Linac” being built at Cornell has superconducting cavities with electric fields as large as 50 MV/m.

For these extremely high-intensity cavities, how does ε compare with ∆? [More concretely, what is

the ratio ε/∆?] Would the perturbation theory we did in class be appropriate for these cavities?

The original MASER experiments had much smaller fields.

Note, in the past I have found that some students do not have a very systematic approach to unit

conversion. My strong recommendation is to keep all units at all stages of your calculation – and

do the conversions by multiplying and dividing by ratios which equal 1. For example, if I wanted

to convert 60 miles per hour into meters per second, I would look up on google that there are 1609

meters in 1 mile, and write

v =
60 miles

hour
× 1609 m

mile
× 1 hour

60 minutes
× 1 minute

60 s
= 27 m/s. (2)
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In fact, any time I am working with dimensional quantities, I write down the units, and carry them

through all of the arithmetic. I can’t tell you how many times I have tracked down an error by

finding that the units don’t work out properly. It makes me cringe when (even as an intermediate

step) I see someone write something like v = 3, when v is supposed to be dimensional. Of course

I am happy when students first explicitly adimensionalize their equations, then work simply with

numbers.

Problem 2.

2.1. Two-level Hamiltonians, are often described in terms of 2× 2 matrices

σz =

(
1 0

0 −1

)
(3)

σx =

(
0 1

1 0

)
(4)

σy =

(
0 −i
i 0

)
(5)

Are these Hermitian, Unitary, both?

2.2. What are the eigenvalues of the Hamiltonian

H = E01 +Bxσx +Byσy +Bzσz, (6)

where 1 is the identity matrix? No need to find the eigenvectors, I just want the eigenvalues as a

function of E0 and the vector Bx, By, Bz. This is a good result to remember (and I often calculate

the eigenvalues of 2x2 matrices by writing them in this form).

2.3. The notation σx, σy, σz comes from the fact that in the case of spin, the object ~σ = (σx, σy, σz)

transforms under rotation as a vector. Feynman Lectures volume 3, chapter 6 works you through

the logic that proves it. Furthermore, we can interpret the positive eigenvectors of Eq. (6) as a

quantum state in which the spin is pointing in the direction of B̃ = (Bx, By, Bz). You do not need

to prove this, but it turns out that you can write this eigenstate as

|n̂〉 =

(
cos(θ/2)eiφ/2

sin(θ/2)e−iφ/2

)
, (7)

where tan θ =
√
B2
x +B2

y/Bz and tanφ = By/Bx describe the direction of the vector B. For

convenience we label the state with the unit vector n̂ = B̃/|B|.

What is the +z-eigenstate, |ẑ〉? [You can use Eq. (7), or go back to Eq. (6) – either is fine.]

2.4. What is the +x-eigenstate, |x̂〉? [You can use Eq. (7), or go back to Eq. (6) – either is fine.]

2.5. What is the +y-eigenstate, |ŷ〉? [You can use Eq. (7), or go back to Eq. (6) – either is fine.]
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2.6. In class we introduced the notation 〈ψ|φ〉 for the dot-product between two vectors in an

abstract Hilbert space. In particular, if

|ψ〉 =

(
ψ1

ψ2

)
(8)

|φ〉 =

(
φ1

φ2

)
, (9)

then we define

〈ψ|φ〉 = ψ∗1φ1 + ψ∗2φ2. (10)

Calculate the overlap 〈x̂|ẑ〉.

2.7. Find the overlap Λ =〈cos(θ1)ẑ+sin(θ1)x̂|cos(θ2)ẑ+sin(θ2)x̂〉. Show that Λ is only a function

of δθ = θ1 − θ2.

This is a special case of a more general relation that |〈n̂|n̂′〉| is only a function of the angle between

the two unit vectors n̂ and n̂′.

Problem 3. In the next problem we will use the following integral

I =

∫
dx

sin2 x

x2
= π. (11)

Here you will verify that result using a trick called “integrating under the integral.” [Apparently

Feynman was fond of tricks like this.]

3.1. By integrating over t1 and t2, show

I =
1

4

∫ ∞
−∞

dx

∫ 1

−1
dt1

∫ 1

−1
dt2 e

ix(t1+t2) (12)

3.2. Perform the x integral in EQ. (12), using the identity∫ ∞
−∞

dx eixs = 2πδ(s). (13)

3.3. Now the t1 and t2 integrals should now be straightforward. Perform them.

Problem 4. Although we did not spend much time exploring it, in class we showed that the

probability of an ammonia atom absorbing radiation of detuning δ in time t is

P = 4ε2t2
sin2(δt/2)

(δt/2)2
, (14)

where ε is proportional to the electric field (so ε2 is proportional to the intensity of the light, I0.)

Imagine we have many ammonia atoms, and light of many frequencies. The total energy absorbed

from the light in that time is then

E ∝ I0t2
∫
dδ

sin2(δt/2)

(δt/2)2
. (15)
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Use the identity ∫
dx

sin2 x

x2
= π (16)

to show that the absorbed power is a constant, independent of time.

Problem 5. Here we will use dimensional analysis to estimate the ionization energy of hydrogen.

The various quantities which come to mind as being involved are: The ionization energy E0, the

proton mass mp, electron mass me, Coulomb’s constant k = e2/(4πε0), planck’s constant h (or

equivalently ~ = h/2π. The physics is non-relativistic, so we don’t expect to need c.

5.1. How many independent dimensionless quantities can you construct from these parameters?

Write them down.

5.2. What is the most general expression for E0 which only involves these scales, and is dimen-

sionally consistent.

5.3. If we assume that mp drops out, what do you find for the ionization energy? [Note, that as

with any other dimensional argument, all you get is an order of magnitude.] Give a number in eV .

Problem 6. The Schrodinger equation for a simple harmonic oscillator reads

− ~2

2m
∂2xψ(x) +

1

2
mω2x2ψ(x) = Eψ(x). (17)

Rescale the variables so that y = x/x0 and E = E/E0 to reduce this to the dimensionless equation

−1

2
∂2yψ +

1

2
y2ψ = Eψ. (18)

What is x0 and E0?

Problem 7. A typical model for the potential between two atoms is

V =
α

x12
− β

x6
, (19)

where α and β are constants which depend on the atom. This is often known as a “6-12” potential.

7.1. Sketch this potential.

7.2. What are the units of α and β?

7.3. There is a unique length-scale r0 you can make out of α and β. What is r0?

7.4. Since there is only one length-scale here, the location of the minimum of V , must roughly be

given by r0. Use calculus to find the location of the minimum r∗, and calculate r∗/r0.

Problem 8. Feedback

8.1. How long did this homework take?

8.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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