
P3317 HW from Lecture 10+11 and Recitation 6

Due Thursday October 11 – Note the delay due to Fall Break

Problem 1. Quantum Cryptography

[This was adapted from a 2014 P3317 final exam problem. It is a little lengthy – but is really cool.]

Cryptography involves sending a message to a correspondent while minimizing the risk of intercep-

tion by an unwanted outsider. Measuring a quantum system disturbs it – a feature which can be

used as part of a cryptography scheme.

Following convention we will label the person sending the message as “Alice,” and use the symbol

A to label quantities associated with her. The receiver is “Bob.” A spy trying to listen in on the

conversation is “Cathy.” The message consists of a sequence of +1 and −1’s. For example, letting

+ denote a +1 and − denote a −1, a message could be + +−−−+ +.

Consider a spin 1/2 particle. The spin operator is S = (~/2)~σ, where the set σi, i = x, y, z are

Pauli matrices. We write |σz = +1〉 and |σz = −1〉 for the eigenstates of Sz with eigenvalues ~/2
and −~/2.

Consider a particle in the state |σz = +1〉. As in our analysis of Bells inequalities, one can measure

the component of the spin along an axis u in the (x, z) plane, defined by the unit vector

û = cos(θ)ẑ + sin(θ)x̂. (1)

The corresponding operator is

Su = S · û =
~
2

(cos(θ)σz + sin(θ)σx) . (2)

The possible results of the measurement are +~/2 and −~/2.

One sees this by noting that the relevant operator is

Su =
~
2

(
cos(θ) sin(θ)

sin(θ) − cos(θ)

)
. (3)

We let λ1 and λ2 be the eigenvalues. The trace of this matrix is λ1 + λ2 = 0 and the determinant

is λ1λ2 = −~2/4. Thus the eigenalues are λ2 = −λ1 = ~/2.

1.1. The eigenstates of the observable in Eq. (2) can be written

|σu = +1〉 = cos(φ)|σz = +1〉+ sin(φ)|σz = −1〉 (4)

|σu = −1〉 = − sin(φ)|σz = +1〉+ cos(φ)|σz = −1〉. (5)

Express φ in terms of θ.
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1.2. In terms of φ, what is the probability p+ that the measurement yields +~/2?

1.3. If the measurement yields +~/2, what will the spin state be immediately after the measure-

ment?

1.4. In terms of φ, what is the probability p− that the measurement yields −~/2?

1.5. If the measurement yields −~/2, what will the spin state be immediately after the measure-

ment?

1.6. Suppose after measuring the observable in Eq. (2) and finding +~/2 one measures Sz. What

is the probability q+ that one finds ~/2 for this second measurement?

1.7. Suppose after measuring the observable in Eq. (2) and finding +~/2 one measures Sz. What

is the probability q− that one finds −~/2 for this second measurement?

1.8. Imagine a sequence where one begins with the spin in the |σz = +1〉, measures Su, then

measures Sz. Show that the total probability of finding +~/2 for this second measurement is

P++(θ) = p+q+ + p−q− =
1 + cos2(θ)

2
. (15)

1.9. Assuming now that the initial state is |σz = −1〉. One measures Su, then measures Sz. What

is the total probability, P−−(θ) of finding −~/2 for this second measurement?

1.10. Imagine now that we have two spins in the state

|Σ〉 =
1√
2

[
|σaz = +1〉 ⊗ |σbz = +1〉+ |σaz = −1〉 ⊗ |σbz = −1〉

]
. (22)

We saw this state when discussing Bell’s inequalities. Show that this can also be written as

|Σ〉 =
1√
2

[
|σax = +1〉 ⊗ |σbx = +1〉+ |σax = −1〉 ⊗ |σbx = −1〉

]
. (23)

1.11. The pair of particles (a, b) is prepared in the spin state |Σ〉 in Eq. (22). As the two particles

move away from one another, this spin state remains unchanged unless a measurement is made.

Alice measures the spin component of a along an axis ua defined by the angle θa. What are the

possible results and the corresponding probabilities in the two cases θa = 0 and θa = π/2. These

respectively correspond to the ẑ and x̂ axis.

1.12. After Alice’s measurement, the spin state of the two particles will depend on the result of

the measurement. For example, if Alice measures along ẑ and finds ~/2 the spins will be in the

state

| ↑↑〉 = |σaz = +1〉 ⊗ |σbz = +1〉.

If Alice measures along ẑ and finds −~/2 what will the spin state be?

1.13. If Alice measures along x̂ and finds ~/2 the spins will be in the state

| →→〉 = |σax = +1〉 ⊗ |σbx = +1〉

. If Alice measures along x̂ and finds −~/2, what will the spin state be?
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1.14. After Alice’s measurement, Bob measures the spin of particle b along an axis ub defined by

the angle θb. Give the possible results of Bob’s measurement and their probabilities in terms of

Alice’s results in the following four configurations:

1. θa = 0, θb = 0

2. θa = 0, θb = π/2

3. θa = π/2, θb = 0

4. θa = π/2, θb = π/2

1.15. In which of the four cases are the measurements on a and b guaranteed to give the same

result?

1.16. A spy, Cathy, sits between the source and Bob. She measures the spin of particle b along an

axis uc defined by angle θc, then lets the spin continue on to Bob. Suppose θa = 0. In terms of

θc, and Alice’s findings, what are the possible results of Cathy’s measurements, and what are their

possibilities? [You may find it useful to take advantage of your results from earlier questions.]

1.17. After Cathy’s measurement, Bob measures the spin of b along the axis θb = 0. In terms of

Cathy’s results, what does Bob find, and with what probability? [You may find it useful to take

advantage of your earlier results.]

1.18. Suppose that θa = θb = 0. As before, Cathy measures the spin along the direction θc. What

is the probability P (θc) that Alice and Bob find the same result after Cathy’s measurement?

1.19. What is the expectation value of P (θc) if Cathy chooses θc at random in the interval [0, 2π]

with uniform probability?

1.20. What is the expectation value of P (θc) if Cathy chooses θc to be either 0 or π/2, each with

probability 1/2.

We can now explain the quantum cryptography procedure

1. Alice prepares her n bit message

2. Alice, who controls the source, prepares an ordered sequence of N � n pairs in the spin state |Σ〉.
She sends all the b spins to Bob and keeps the a spins.

3. For each spin they collect, Alice and Bob measure either the x or the z component. For each spin

they independently choose the x or z direction at random with probability p = 1/2. Alice’s choice

and Bob’s choice are independent. The both register all their results.

4. Bob selects a subset of his measurements (say N/2 of them). He calls Alice on the telephone, and

gives this list to Alice. He includes the axis, and the result of the measurement

5. Alice compares, for these N/2 spins, her axes and her results. By doing so she can tell if a spy is

present. If a spy is spotted they abort the transmission.

6. For the other N/2 spins, Bob tells Alice which axes he measured, but he does not tell her his results.

7. Alice calls Bob on the phone, and ...
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1.21. How can Alice be sure that a spy is present?

1.22. What is the probability that an operating spy will escape being detected? Calculate this

probability for N/2 = 200. Make some reasonable assumptions. For example, assume Cathy

randomly chooses θc independently for each spin, and use the results of 1.19 or 1.20. Explicitly

state all your assumptions.

1.23. After one attempt to communicate, Alice measured 1 : x+, 2 : z+, 3 : z−, 4 : z+, 5 : x+, 6 :

x−, 7 : z+, 8 : x+, 9 : x−, 10 : z−, 11 : x+, 12 : z+ the number represents which spin, the letter

represents the axis, and the ± gives the result of the measurement. Bob reported to Alice half of

his results 2 : x+, 5 : x+, 8 : x−, 9 : z+, 11 : z+, 12 : z−. Alice declared that there was a spy. How

did she know?

1.24. In as separate attempt to communicate, Alice measured 1 : x+, 2 : x−, 3 : z+, 4 : x+, 5 :

z−, 6 : z−, 7 : x+, 8 : z+, 9 : z+, 10 : z−, 11 : x+, 12 : x−. Bob reports 1 : x+, 3 : x−, 4 : z−, 7 :

x+, 10 : x+, 11 : x+. Alice decides that it was unlikely that a spy was listening in. What is the

probability that a spy was listening?

1.25. In this second case [where Alice measured 1 : x+, 2 : x−, 3 : z+, 4 : x+, 5 : z−, 6 : z−, 7 :

x+, 8 : z+, 9 : z+, 10 : z−, 11 : x+, 12 : x− and Bob reported 1 : x+, 3 : x−, 4 : z−, 7 : x+, 10 :

x+, 11 : x+], Bob reports the following axes: 2 : x, 5 : x, 6 : x, 8 : z, 9 : x, 12 : x. Alice wants to

send the message (+,−). What can she tell Bob on the phone to securely transmit this message?

What will Bob do?

Problem 2. We wish to use the variational principle to estimate the ground state energy of the

Hydrogen atom.

2.1. Using the techniques we have previously studied, adimensionalize the time independent Schrodinger

equation for the electron in a Hydrogen atom

Eψ(r) = − ~2

2m
∇2ψ(r)− e2

4πε0

1

r
ψ(r). (38)

Call your scaled coordinate s.

2.2. Given an arbitrary normalized function of the scaled coordinate, ψ(s), we can use the varia-

tional principle to produce an upper bound to the ground state energy of Hydrogen. By normalized,

I mean ∫
d3s |ψ(s)|2 = 1. (39)

Write an expression for this variational bound. The expression will have the form

E

E0
= A

∫
d3s |∇ψ(s)|2 +B

∫
d3s
|ψ(s)|2

s
, (40)

where E0 is the energy scale used in adimensionalizing the Schrodinger equation, A,B are dimen-

sionless constants. Find A and B.
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2.3. We will try the following variational wavefunction

ψ(s) =
1√

8πλ3
e−s/(2λ), (41)

where λ is an undetermined variational parameter. This is is properly normalized as∫
d3s |ψ(s)|2 = 4π

∫
ds s2|ψ(s)|2 = 1. (42)

Calculate the variational energy E(λ) in Eq. (40). Just use the symbols, A, B, and E0. Do not

substitute your expressions for these parameters.

2.4. Minimize E(λ) with respect to λ. Again, just use the symbols A, B, and E0.

2.5. Substitute in your values for A, B, and E0. What is your bound on the energy in eV .

Problem 3. Consider the adimensionalized time independent Schrodinger equation for a a particle

in a double well potential

Eψ(x) = −1

2
∂2xψ(x) + V0(x

2 − 1)2ψ(x). (43)

Take V0 = 20.

3.1. Plot the potential. Label your graph.

3.2. Choose a reasonable spatial and temporal discretization (I took dx = 0.05 with x running

from −5 to 5 and dt = 0.01, and it seemed to work for me). Make a stationary wave packet of

width 0.3, centered at x = −1. Numerically integrate the time dependent Schrodinger equation

until time t = 600. Make a properly labeled density plot where the horizontal axis is position, the

vertical axis is time, and the brightness corresponds to |ψ|2.

3.3. Describe in words what you observe. Is this result consistent with the modeling of Ammonia

we used in terms of two-level systems?

Problem 4. Feedback

4.1. How long did this homework take?

4.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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