
P3317 HW from Lecture 16+17 and Recitation 9

Due Oct 30, 2018

Problem 1. Born-Openheimer potential for H+
2

The H+
2 ion consists of two protons, and one electron. Within the Born Oppenheimer approxi-

mation, we “integrate out” the electron to produce an effective potential felt by the protons. The

Born-Oppenheimer potential is

V (R1 −R2) =
e2

4πε0

1

|R1 −R2|
+ E(R1 −R2) (1)

where the first term is the direct interaction between the protons, and the second term is the

effective interaction from the electrons. In the case of H+
2 , this electronic contribution is the

eigenvalue of a single electron problem,

Eψ(r) = − ~2

2me
∇2ψ(r)− e2

4πε0

[
1

|R1 − r|
+

1

|R2 − r|

]
ψ(r). (2)

Adimensionalized, this equation reads

Eψ(r) = −1

2
∇2ψ(r)−

[
1

|R1 − r|
+

1

|R2 − r|

]
ψ(r). (3)

We will work with this adimensionalized form

1.1. How is the dimensionless energy related to the dimensionful energy? (Write the conversion

factor in terms of the Rydberg energy ER. Note: Wikipedia uses the symbol Ry instead of ER.)

How is the dimensionless length related to the dimensionful length? (Write the conversion factor

in terms of the Bohr radius a0.)

If you are interested in an analytic variational solution to Eq. (2) – you can look at Griffiths Chapter

7.3. It is kind of ugly though, because it is a 3D problem without spherical symmetry. A few years

ago I had a homework problem that worked through it, but many students found it dissatisfying

and mathematical. Instead we will numerically consider the 1D analog

Eψ(x) = −1

2
∂2xψ(x)−

[
W (x−X1) +W (x−X2)

]
ψ(x), (4)

where W (x) is the Coulomb interaction between the nucleus and the electron. It turns out that

the 1/x potential is not that well behaved in 1D, so we will use a truncated version

W (x) =
1√

x2 + δ2
. (5)

We will take δ to be a small number, so that this is similar to a 1/x potential. For your numerics

take δ = 0.1.
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1.2. Plot the function Ve(x) = −W (x−X1)−W (x−X2) for x running from −5 to 5 with X1 = −3/2

and X2 = 3/2. Choose a scale for your axes so that the main features can be seen. Label your

axes. Do not submit a program which plots this, just submit this graph.

1.3. Write a program which will numerically solve Eq. (4), finding the 5 eigenvalues closest to −8,

for fixed d = X1−X2. [These will be the 5 lowest eigenvalues.] Take δ = 0.1, and a real space grid

running from x = −10 to 10 with a grid spacing of 0.1. Place the two “protons” symmetrically,

X1 = d/2 and X2 = −d/2.

To make eigsh return eigenvalues close to −8, make one of its arguments sigma=-8.

Tabulate the function E(d), for these 5 states, with d running from 0 to 5 in steps of 0.1. Do not

hand this in – this is just so that you can plot V .

Make a properly labeled plot of the Born-Oppenheimer potential V (d) = E(d)+W (d) as a function

of d for these 5 orbitals. [We add W (d), as this is the direct interaction between the protons.] Do

not submit your program, just submit this graph with your homework. Annotate your graph (either

by hand or with the computer) to point out the potential coming from the bonding orbital and

from the lowest antibonding orbital.

1.4. Plot the electronic wavefunction for the lowest bonding and antibonding orbitals when the

nuclei are separated by a distance d = 3. Label your graph, and mark which is bonding, and which

is antibonding. Do not submit your program, just submit the graph.

Problem 2. Semiclassical Molecule I want you to model the excitation spectrum of a neutral

diatomic molecule. Generically there are three types of excitations:

electronic – an electron is promoted to a higher level

vibrational – the distance between the two atoms oscillates

rotational – the atoms rotate around one-another

Here you will estimate the energy scale of each of these excitations.

2.1. What is the typical bond length in a diatomic molecule (such as CO, or H2)? Feel free to look

this up in a textbook or on the web. You could also figure it out with dimensional analysis. We

just need an order of magnitude.

2.2. One can roughly model the electronic states by considering the electrons to be trapped in

a square box of size given by your solution to 2.1. If so, what is the energy scale of electronic

excitations (in eV)?
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One can estimate the vibrational energy by approximating the Born-Openheimer potential as a

harmonic oscillator V (r) ∼ 1
2k(r − r0)2, where r0 is the equilibrium size of the molecule, and r is

the separation between the nucleii. We will use dimensional analysis to estimate the constant k.

2.3. What units does k have?

2.4. The Born Oppenheimer potential comes from the solution of an electronic problem in the

presence of the nuclei. List the dimensional quantities that it seems reasonable for k to depend on.

Can you construct a unique k from these? If you have too many dimensional quantities, check to

see if any of them are similar in size. Since we are looking for a numerical answer, these all are

equivalent for us. If you still have too many, critically evaluate them and discard ones which are

less likely to play a role in this physics. If you have too few dimensional quantities, look at Eq. (2).

This is the equation for the Born-Oppenheimer potential, so they should all be there. Maybe you

missed a fundamental constant like ~?

Use these numbers to estimate k (in physical units).

2.5. The energy of these vibrations should be ~ω = ~
√
k/m, where m should be a the nuclear

mass. Estimate the energy of vibrational excitations (in eV ).

2.6. For the rotational energy scales, we can use the classical expression, E = L2/2I. Quantum

mechanically, what are the allowed values of L?

2.7. From the geometry of the diatomic molecule, estimate the moment of inertia I.

2.8. Estimate the energy (in eV ) of the rotational excitations.

Problem 3. Paschen-Back effect The electronic and nuclear spins of Rubidium-87 are coupled

by the “hyperfine interaction.” This is basically the dipole-dipole coupling between these spins. Of

course, the typical magnetic moment of a nucleus is very very small, so the coupling is quite weak.

Nonetheless, one can detect this splitting by “Magnetic Resonance” – the same technology which

is used in the “Magnetic Resonance Imaging” used for medical diagnosis.

The model used for the Hyperfine splitting is

H = −geµeŜzB − gRbµN ÎzB +Ahf Ŝ · Î (6)

where B is a magnetic field in the ẑ direction. Numerically µe = 10−23J/T, and µN = 5×10−27J/T,

ge ≈ 2/~, gRb ≈ 3/~, and Ahf = ~ × 1.5GHz/~2. The nuclear spin is 3/2. and the electronic spin

is 1/2. The operator Ŝ = (Ŝx, Ŝy, Ŝz) corresponds to the electronic spin, and Î = (Îx, Îy, Îz)

corresponds to the nuclear spin.

We want to understand the behavior of the energy levels as a function of the magnetic field.

3.1. Give two independent dimensionless numbers that can be made from µe, µN , B,Ahf , ~? [Hint

there are only two such numbers, and as usual they are not unique.]
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3.2. Given that the ratio µb/µe is so small, it is reasonable to drop it from the problem, and

consider the simplified model

H = −geµeSzB +AhfS · I. (7)

Convert this equation to dimensionless units. Measure angular momenta in units of ~, energy in

units of Ahf~2 and B in units of Ahf~/geµe. Use this dimensionless expression for the rest

of the problem. I do not want to see you write Ahf or g or ~ for the rest of this

problem. [Except for your graph at the end.]

For the following two subproblems it will be helpful to use the fact that for a spin-1/2 S the states

obey: (note in our dimensionless units, all of these hbars are equal to unity)

Sz|S = 1/2,ms = 1/2〉 = (~/2)|S = 1/2,ms = 1/2〉 (8)

Sz|S = 1/2,ms = −1/2〉 = (−~/2)|S = 1/2,ms = −1/2〉 (9)

S+|S = 1/2,ms = 1/2〉 = 0 (10)

S+|S = 1/2,ms = −1/2〉 = ~|S = 1/2,ms = 1/2〉 (11)

S−|S = 1/2,ms = 1/2〉 = ~|S = 1/2,ms = −1/2〉 (12)

S−|S = 1/2,ms = −1/2〉 = 0. (13)

[If you take PHYS 4443 you will derive these.] Similarly, for a spin-3/2 I the states obey:

Iz|I = 3/2,mI = 3/2〉 = (3~/2)|I = 3/2,mI = 3/2〉 (14)

Iz|I = 3/2,mI = 1/2〉 = (~/2)|I = 3/2,mI = 1/2〉 (15)

Iz|I = 3/2,mI = −1/2〉 = (−~/2)|I = 3/2,mI = −1/2〉 (16)

Iz|I = 3/2,mI = −3/2〉 = (−3~/2)|I = 3/2,mI = −3/2〉 (17)

I+|I = 3/2,mI = 3/2〉 = 0 (18)

I+|I = 3/2,mI = 1/2〉 =
√

3~|I = 3/2,mI = 3/2〉 (19)

I+|I = 3/2,mI = −1/2〉 =
√

7/2~|I = 3/2,mI = 1/2〉 (20)

I+|I = 3/2,mI = −3/2〉 =
√

3~|I = 3/2,mI = −1/2〉 (21)

I−|I = 3/2,mI = 3/2〉 =
√

3~|I = 3/2,mI = 1/2〉 (22)

I−|I = 3/2,mI = 1/2〉 =
√

7/2~|I = 3/2,mI = −1/2〉 (23)

I−|I = 3/2,mI = −1/2〉 =
√

3~|I = 3/2,mI = −3/2〉 (24)

I−|I = 3/2,mI = −3/2〉 = 0. (25)

[Again, you will derive this in PHYS 4443.] In recitation you had a chance to play with a computer

algebra system which knows about these operators.

If we specify both the electronic and nuclear spin quantum numbers, we will write something like

|ms = 1/2,mI = 1/2〉 = |S = 1/2,ms = 1/2〉 ⊗ ||I = 3/2,mI = 1/2〉. (26)
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The S operators only act on the S quantum numbers, and similarly with I. For example

S−|ms = 1/2,mI = 1/2〉 = ~|ms = −1/2,mI = 1/2〉 (27)

or

I+|ms = 1/2,mI = 1/2〉 =
√

3~|ms = 1/2,mI = 3/2〉. (28)

Finally, you will find the following identity useful:

S · I = SzIz + SxIx + SyIy (29)

= SzIz +
1

2
(S+I− + S−I+) (30)

3.3. There is a unique eigenstate of this Hamiltonian with mf = ms+mI = 2, it is |ms = 1/2,mI =

3/2〉. Calculate its energy as a function of B. This linear behavior is similar to what happens if

you just have a single level of a spin-1/2 electron – it is known as the Zeeman effect.

[Hint: Just act on this state with H, and use the given rules.]

3.4. Find the eigenstates and eigenvalues of this Hamiltonian which have mf = 1. These are linear

combinations of

|A〉 = |ms = 1/2,mI = 1/2〉 (31)

|B〉 = |ms = −1/2,mI = 3/2〉 (32)

That is write ψ = α|A〉+ β|B〉, and write down a matrix eigenvalue equation for the vector

~ψ =

(
α

β

)
. (33)

You will need to find the eigenvalues of that 2× 2 matrix.

Plot energy vs magnetic field Be sure to label the axes so we know what units you are using. Choose

your scale so that the important features can be seen.

This is the Paschen-Bach effect, sometimes called the nonlinear Zeeman effect.

Problem 4. Calculus of Variation

Some of you said that your analytical mechanics course did not formally define the math behind

“Calculus of Variation”. This problem works you through the formal definition. In a typical

classical mechanics class one spends several weeks on this, so this is going to be a bit abbreviated.

Let y(x) be an arbitrary function. We can define a functional F [y] as an object which takes the

function y and spits out a number. For example,

F [y] =
1

2

∫
dx1 dx2
|x1 − x2|

y(x1)y(x2). (34)
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The variational derivative is defined by

δF [y]

δy(x)
= lim

η→0

F [y + ηsx]− F [y]

η
, (35)

where sx(t) = δ(t− x) is a Dirac delta function. So in this example

F [y + ηsx] =
1

2

∫
dx1 dx2
|x1 − x2|

(y(x1) + ηδ(x1 − x)) (y(x2) + ηδ(x2 − x)) . (36)

4.1. Write (F [y + ηsx] − F [y])/η as an integral over x1 and x2. Simplify the expression, but

don’t do the integrals. You should find two terms, one which is proportional to η, and one that is

independent of η.

4.2. Since we will be taking the limit η → 0, neglect the term proportional to η. Calculate the

integrals for the other term, and hence evaluate

δF [y]

δy(x)
= lim

η→0

F [y + ηsx]− F [y]

η
. (37)

4.3. Consider a more generic symmetric Kernel,

G[y] =
1

2

∫
dt1 dt2K(t1, t2)y(t1)y(t2), (38)

where K(t1, t2) = K(t2, t1) is simply a function of two variables. Using any technique at your

disposal, calculate
δG[y]

δy(t)
. (39)

Note: I changed the name of the dummy variables, but the logic should still be clear.

4.4. Consider a Kernel of the form:

K(t1, t2) = −mδ′′(t1 − t2)−mω2δ(t1 − t2) (40)

where δ(t) is the Dirac delta function, and

δ′′(t) =
∂2

∂t2
δ(t). (41)

By integrating by parts in the variables t1 and t2, show that

G[y] =

∫
dt

(
1

2
m(y′(t))2 − 1

2
mω2(y(t))2

)
(42)

4.5. By taking the result from problem 4.3, and substituting in Eq. (40), show that

δG[y]

δy(t)
= −my′′(t)−mω2y(t), (43)

and hence Newton’s equations for the simple harmonic oscillator can be written as

δG[y]

δy(t)
= 0 (44)

[Note, most classical mechanics courses use slightly different notation for this.]
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Problem 5. Feedback

5.1. How long did this homework take?

5.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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