
P3317 HW from Lecture 18+19 and Recitation 10

Due Nov 6, 2018

Problem 1. Equipartition Note: This is a problem from classical statistical mechanics. We will

need the answer for the next few problems, and it will reveal a failing of classical mechanics. We

will then show how quantum mechanics fixes the problem. If I wanted to challenge you I would just

ask: Find the average energy of a classical harmonic oscillator attached to a heat bath

at temperature T . That would likely cause a fit, so I’ve laid out the required modeling below.

If you want the extra challenge, feel free to try it without looking at these hints – in that case

you don’t need to do all of the subparts to the problem, just come up with an answer (and give a

sound argument). The answer is a famous result known as ”equipartition.” One of the motivators

of quantum mechanics was an observed break-down of equipartition.

1.1. The first modeling step is to think of a concrete realization of a harmonic oscillator. Lets take

a particle of mass m attacked to a spring with spring constant k = mω2. Write the energy E

of this particle as a function of its position x and momentum p. [Remember, this is just

classical mechanics – so its easy.]

Solution 1.1 (1 point).

E =
1

2m
p2 +

1

2
mω2x2 (1)

1.2. According to classical statistical mechanics, the probability of the particle being within dx of

position x and with have momentum within dp of p is

P (x, p) dx dp =
e−E(x,p)/kBT

Z
dx dp (2)

where the partition function Z is a normalization constant, defined to make∫
P (x, p) dx dp = 1. (3)

Write Z as an integral. You don’t need to evaluate it (yet).

Solution 1.2 (2 points). Since∫
P (x, p)dxdp =

1

Z

∫
e−E(x,p)/kBTdxdp = 1, (4)

this implies that

Z =

∫
e−β(

1
2m

p2+ 1
2
mω2x2)dx dp (5)
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1.3. The average energy is then

〈E〉 =

∫
P (x, p)E(x, p) dx dp. (6)

Calculate 〈E〉. Hint: its easiest if you write this as a ratio of two integrals, and make a change of

variables to scale out all dimensional quantities.

You have just proved the equipartition function, which says that a classical harmonic oscillator in

thermal equilibrium has energy kBT , regardless of its frequency.

Solution 1.3 (2 points). Following the suggestion of the question, we write

〈E〉 =

∫
e−β(

1
2m

p2+ 1
2
mω2x2) ( 1

2mp
2 + 1

2mω
2x2
)
dx dp∫

e−β(
1

2m
p2+ 1

2
mω2x2)dx dp

. (7)

We then rescale the variables, letting y = (βmω2/2)1/2x, and k = (β/2m)1/2p, to find

〈E〉 =
1

β

∫
e−y

2−k2(y2 + k2)dy dk∫
e−y2−k2dy dk

(8)

=
1

β

[∫
e−y

2
y2dy∫

e−y2dy
+

∫
e−k

2
k2dy∫

e−k2dk

]
(9)

=
2

β

∫
e−y

2
y2dy∫

e−y2dy
(10)

=
1

β
, (11)

where we used the Gaussian integral formulas from Homework 1. There are, of course a few other

equally good tricks for doing this.

Problem 2. Rayleigh-Jeans Law We will use the equipartition function to estimate the spectrum

of a “black body”. A black body is a model for a furnace. The idea is that inside a furnace the

electromagnetic field is in thermal equilibrium with the walls. Imagine we drill a small hole in our

furnace, and put a filter in the hole so that it only lets photons with an angular frequency within

dν of ν out of the hole, then the power emerging from the hole is Γ(ν)dν. The function Γ(ν) is the

black body spectrum.

The way we will estimate Γ(ν) is we will first calculate I(ν), the amount of energy stored in the

furnace in modes with angular frequency between ν and ν + dν. Since all light moves at the same

speed, we should have Γ(ν) ∝ I(ν).

Recall from PHYS 2214/2218 that each mode of the electromagnetic field is just a harmonic oscil-

lator. If we let ρ(ν)dν be the number of modes in the cavity with angular frequency within dν of
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ν, then equipartition tells us that the energy contained in those modes will be

I(ν)dν = kBTρ(ν)dν. (12)

The function ρ(ν) is known as the density of states.

2.1. To find the electromagnetic modes in the furnace, we would in principle need to know all

sorts of details about its shape and the material properties. (For example, conducting walls will

give different boundary conditions for Maxwell’s equations than insulating walls.) We just need an

estimate though, so we will treat the furnace as a cubic box of length L, with periodic boundary

conditions. You can also use ”hard wall” boundary conditions if you prefer. The result is the same

in the end.

What are the allowed wavevectors for electromagnetic waves in a box of length L?

Solution 2.1 (2 points). Periodicity implies

eikxx = eikx(x+L) (13)

and so kx = 2π
L nx for nx ∈ Z. By the same argument ky = 2π

L ny and kz = 2π
L nz.

2.2. Write a sum which expresses how many modes have angular frequency less than ν. Call this

quantity N (ν). [This is similar to the calculation you did in the homework problem on Fermi

Pressure, except the dispersion is different.] Ignore polarization.

Solution 2.2 (2 points). Since ω = c|~k|, if we want modes with ω less than ν, this is equivalent

to finding the 3-tuples (nx, ny, nz) such that

2πc

L

√
n2x + n2y + n2z < ν (14)

Ignoring photon polarisation, we just sum over all such 3-tuples that satisfy the inequality above

to get the total number of modes.

N(ν) =
∑

nx,ny ,nz∈Z,
√
n2
x+n

2
y+n

2
z<

Lν
2πc

1 (15)

2.3. Approximate the sum as an integral, and perform the integral to estimate N (ν).

Solution 2.3 (2 points). Just as we did in Homework 7, we can approximate this sum as an

integral. Define R = Lν
2πc .

N(ν) =

∫
n2
x+n

2
y+n

2
z<R

2

dnxdnydnz =
4

3
πR3 =

L3ν3

6π2c3
(16)
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2.4. The number of modes is just the integral of the density of states:

N (ν) =

∫ ν

0
ρ(ν̄) dν̄. (17)

Take a derivative to calculate ρ(ν).

Solution 2.4 (2 points).

ρ(ν) =
∂N(ν)

∂ν
=

L3ν2

2π2c3
(18)

2.5. How does Γ(ν) scale with ν for larger ν. This is known as the Rayleigh-Jeans law.

Solution 2.5 (2 points). Since Γ(ν) ∝ I(ν) ∝ kBTρ(ν), we expect Γ(ν) ∝ ν2. So Γ(ν) should

scale quadratically with ν.

If you actually do the experiment, you will see that Γ(ν)→ 0 as ν →∞. Thus the classical theory

gives a qualitatively incorrect result.

Problem 3. Energy in a Thermal Quantum Harmonic Oscillator

The error in Rayleigh and Jeans’ argument is that equipartition does not hold in a quantum world.

The eigenstates of the harmonic oscillator are labeled by an integer n. The average energy at

temperature T should be

〈E〉 =

∑
nEne

−En/kBT

Z
, (19)

where

Z =
∑
n

e−En/kBT . (20)

3.1. Calculate Eq. (19), using the spectrum of a harmonic oscillator. Do not include the zero-point

energy, as it will not contribute to the power emerging from the furnace. That is take En = ~ωn
for integer n.
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Solution 3.1 (3 points). Ignoring ground state energy,

Z =
∞∑
n=0

e−~ωnβ

=

∞∑
n=0

e−~ωnβ

=
1

1− e−~ωβ

(21)

where in the last step we have evaluated the sum by recognizing that it is a geometric series. One

slick way to calculate the energy is to note that

〈E〉 = − 1

Z

∂Z

∂β

= − 1

Z

[
−(−~ω)(−e−~ωβ)

(1− e−~ωβ)2

]
=

~ωe−~ωβ

1− e−~ωβ

=
~ω

e~ωβ − 1
.

(22)

3.2. Under what circumstances does this reduce to the classical equipartition result?

Solution 3.2 (1 point). We get the classical equipartition result if ~ωβ � 1, or kBT � ~ω.

Problem 4. Planck

4.1. How should equation (12) be corrected to account for the quantum mechanical result you

found in problem 3?

Solution 4.1 (2 points). Since the equipartition theorem no longer holds, we should replace the

kBT factor in

I(ν)dν = kBTρ(ν)dν (23)

by our results for 〈E〉:
I(ν)dν =

~ν
e~νβ − 1

ρ(ν)dν (24)

4.2. What is the quantum result for Γ(ν) – this is known as the Planck black body spectrum.

Don’t worry about multiplicative constants, I just want to know how it scales with ν.
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Solution 4.2 (3 points). Recalling our results for ρ(ν) earlier on,

Γ(ν) ∝ I(ν)

=
~ν

e~νβ − 1
ρ(ν)

=
~ν

e~νβ − 1

L3ν2

2π2c3

=
~L3

2π2c3
ν3

e~νβ − 1

∝ ν3

e~νβ − 1

(25)

4.3. How does Γ(ν) behave as ν →∞?

Solution 4.3 (1 point). As ν →∞, 1
e~νβ−1 ∼ e

−~νβ , which overwhelms the ν3 factor. Therefore,

Γ(ν) exponentially decays to zero.

4.4. Plot Γ(ν). Label your graph (you may use “arbitrary units” for the vertical axis, but on the

horizontal axis, locate the point where ~ν = kBT .

Solution 4.4 (3 points). 1 2 3 4 5 6 7 8 9 10
ν ℏ/kBT

Γ

Problem 5. Two coupled oscillators
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To help you with this problem I will give another quick review of ladder operators. We begin with

the simple harmonic oscillator (in dimensionless coordinates):

Ĥ =
1

2
p̂2 +

1

2
x̂2. (26)

One then defines â = (x̂+ ip̂)/
√

2 and â† = (x̂− ip̂)/
√

2, which explicitly obey [â, â†] = 1. In terms

of these operators, one can write

Ĥ = â†â+
1

2
. (27)

Using our favorite identity [A,BC] = B[A,C] + [A,B]C, we immediately see [â, Ĥ] = a and

[â†, Ĥ] = −a†. This instantly gives us a ladder of states. We start by defining ψ0(x) to be the

wavefunction obeying

âψ0(x) = 0. (28)

This is a 1st order differential equation, and easy to solve (the answer is a Gaussian). Clearly

Ĥψ0 =
1

2
ψ0. (29)

We now get a ladder of states. Not worrying about normalization, we define

ψj = a†ψj−1. (30)

If ψj−1 is an eigenstate of H with eigenvalue Ej−1, we find

Hψj = Ha†ψj−1 = (a†H + a†)ψj−1 = (Ej−1 + 1)a†ψj−1 = (Ej−1 + 1)ψj , (31)

which tells us that ψj is also an eigenstate, and the energies form a ladder: Ej = j + 1/2.

In class we have been looking at a problem with coupled oscillators. We were thinking about a long

chain, but in this problem we will consider just two oscillators:

Ĥ =
1

2

(
p̂21 + p̂22

)
+

1

2

(
x̂21 + x̂22

)
+ α(x1 − x2)2. (32)

Using the argument in class we can define operators â1 and â2 which obey [âi, â
†
j ] = δij and

[âi, âj ] = 0. The expressions for these operators are kind of ugly, but the end result (that we spent

quite some time proving) is that

Ĥ = A+ ε
(
â†1â1 + â†2â2

)
− J

(
â†1â2 + â†2â1

)
, (33)

where A, ε, J are all functions of α. In this question we will explore the properties of Eq. (33).

5.1. Define a wavefunction ψ00(x1, x2) such that

â1ψ00 = 0 (34)

â2ψ00 = 0. (35)
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This is known as “the vacuum state”. It is the state with no phonons. It is the natural generalization

of Eq. (28).

Prove that ψ00 is an eigenstate of Ĥ. What is the eigenvalue?

Solution 5.1 (2 points).

Ĥψ00 =
[
A+ ε

(
â†1â1 + â†2â2

)
− J

(
â†1â2 + â†2â1

)]
ψ00 (36)

= Aψ00 + εâ†1â1ψ00 + εâ†2â2ψ00 − Jâ†1â2ψ00 − Jâ†2â1ψ00 (37)

= Aψ00 (38)

This means that ψ00 is an eigenstate of Ĥ, with eigenvalue A.

5.2. We define a normalized wavefunction ψnm as

ψnm =
1√
n!m!

(
a†1

)n (
a†2

)m
ψ00. (39)

Is ψ10 an eigenstate of Ĥ? If so, what is the eigenvalue.

Solution 5.2 (3 points).

ψ10 = a†1ψ00. (40)

We will want to see if Ĥψ10 = λψ10 for some λ. Before jumping in, note that:

â1ψ10 = a1a
†
1ψ00 =

(
1 + a†1a1

)
ψ00 = ψ00 (41)

â2ψ10 = a2a
†
1ψ00 = a†1a2ψ00 = 0. (42)

Now:

Ĥψ10 = Aψ10 + εâ†1â1ψ10 + εâ†2â2ψ10 − Jâ†1â2ψ10 − Jâ†2â1ψ10 (43)

= (A+ ε)ψ10 − Jâ†2ψ00 (44)

= (A+ ε)ψ10 − Jψ01. (45)

ψ10 is therefore not an eigenstate of the Hamiltonian: a partlcle initially in state ψ10 will evolve

in to a linear combination of ψ01 and ψ10.

5.3. Consider a wavefunction

ψ(x1, x2, t) = a(t)ψ1,0(x1, x2) + b(t)ψ0,1(x1, x2). (46)

This is the most general wavefunction in the “one phonon sector”. The coefficient |a|2 is interpreted

as the probability of the phonon being on the first oscillator, and |b|2 is the probability it is on the

second oscillator.
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From the time dependent Schrodinger equation i∂tψ = Ĥψ, find a differential equation for a(t) and

b(t).

Your result should be reminiscent of your model for Ammonia: The equations of motion for a

phonon in these two coupled oscillators is identical to the equation of motion for a particle in a

double well.

Solution 5.3 (3 points).

i∂tψ = Ĥψ (47)

= a(t)Ĥψ10 + b(t)Ĥψ01. (48)

We found Ĥψ10 already. By symmetry, we can see that Ĥψ01 is the same as the expression for

ψ10 but with the labels 1 and 0 swapped:

Ĥψ01 = (A+ ε)ψ01 − Jψ10. (49)

Therefore:

i∂tψ = Ĥψ (50)

= [a(t) (A+ ε)− Jb(t)]ψ10 + [b(t) (A+ ε)− Ja(t)]ψ01. (51)

By isolating coefficients for ψ10 and ψ01, we can extract the two first-order differential equations:

i~∂ta(t) = (A+ ε) a(t)− Jb(t) (52)

i~∂tb(t) = (A+ ε) b(t)− Ja(t). (53)

The simplest way to solve this, as with the ammonia molecule, is to find the eigenvectors and

eigenvalues of the Hamiltonian matrix.

5.4. The operator which measures the total number of phonons is N̂ = â†1â1 + â†2â2. Show that

[N̂ , Ĥ] = 0, which means that the number of phonons is conserved.
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Solution 5.4 (2 points). Let me write the Hamiltonian in four terms:

Ĥ = A+ εN̂ − J
(
â†1â2 + â†2â1

)
. (54)

Clearly N̂ commutes with the first two terms, so let us focus on the last two:[
N̂ , â†1â2

]
=
[
N̂1, a

†
1a2

]
+
[
N̂2, a

†
1a2

]
(55)

= a†1a2 − a
†
1a2 (56)

= 0. (57)

This is because the operator â†1â2 increases particle number 1 by one, and decreases particle

number 2 by one, so that the sum of the two particle numbers is conserved. Similarly for the last

term. Therefore,
[
N̂ , Ĥ

]
= 0.

Problem 6. Magnons

In class we studied a model of phonons: quanta of vibration in coupled mechanical systems. Here

you will do a similar thing with excitations of a set of coupled spins. This is actually a simpler

model. These quanta of excitations are typically called Magnons. [Note, they are not called spinons

– spinons are something else.]

There are a number of molecules which can be thought of as spin chains, for example we can

consider a polymer made of CsFeBr3. The iron is magnetic – meaning it has a net spin. It turns

out in this context the spin is 1.

Spin 1 chains are really interesting, but we will save that for another day – here we will think about

the spin-1/2 chain. We imagine we have n sites in a line. At each site there is a spin-1/2. The

Hilbert space is spanned by states like | ↑↑↓↑↓ · · · 〉, where we specify the spin on each site. We are

going to start with a state |j〉 where all of the spins are down except the j’th spin, and ask how

the Hamiltonian acts on that state.

The strongest interaction will be among neighboring spins. Assuming nothing is breaking rotational

invariance, we expect a Hamiltonian something like

H = −J
n−1∑
i=1

Si · Si+1. (58)

[This is known as the Heisenberg model of a spin chain. Other models include “Ising, XY, XXZ,

XYZ” which are similar, but have some rotational anisotropy.] We will assume that the coefficient

J is positive, which means neighboring spins want to point in the same direction. This is a model

of a ferromagnet. The ground state has all of the spins aligned.

Recall, that S represents the vector of operators S = (Sx, Sy, Sz), with Sx = (S+ + S−)/2, and
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Sy = (S+ − S−)/(2i).

6.1. Write Si · Si+1 in terms of Szi , S
+
i , S

−
i , S

z
i+1, S

+
i+1, S

−
i+1.

Solution 6.1 (2 points).

Si · Si+1 = Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1. (59)

Now, recall that:

Sx =
(
S+ + S−

)
/2 (60)

Sy = −i
(
S+ − S−

)
/2. (61)

It may be more intuitive to think about the matrix representations:

Sx =
1

2

(
0 1

1 0

)
Sy =

1

2

(
0 −i
i 0

)
(62)

S+ =

(
0 1

0 0

)
S− =

(
0 0

1 0

)
. (63)

It follows that:

Si · Si+1 =
1

4

(
S+
i S

+
i+1 + S−i S

−
i+1 + S+

i S
−
i+1 + S−i S

+
i+1

)
(64)

− 1

4

(
S+
i S

+
i+1 + S−i S

−
i+1 − S

+
i S
−
i+1 − S

−
i S

+
i+1

)
+ Szi S

z
i+1

=
1

2

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ Szi S

z
i+1 (65)

6.2. Argue that H|j〉 is a linear superposition of states |j〉, |j+1〉 and |j−1〉. Find the coefficients.
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Solution 6.2 (3 points). The terms in the operator
(
S+
i S
−
i+1 + S−i S

+
i+1

)
/2 raises the spin on one

site and lowers the spin on a neighbouring site. It will therefore destroy a state when it acts on

two neighbouring sites with the same spin. In other words

1

2

∑
i

(
S+
i S
−
i+1 + S−i S

+
i+1

)
|j〉 =

1

2

(
S+
j−1S

−
j + S−j S

+
j+1

)
|j〉 =

|j + 1〉+ |j − 1〉
2

, (66)

and so this part of the Hamiltonian lowers the spin on site j, while raising it on the neighbouring

sites. The part of the Hamiltonian given by
∑

i S
z
i S

z
i+1 will change the state only by a multi-

plicative constant, since all of the sites are in eigenstates of the Sz operator. To figure out what

this multiplicative constant will be, note that Szi S
z
i+1 = 1/4 if both spins i and i + 1 are in

the same direction, and Szi S
z
i+1 = −1/4 if the two spins are in opposite directions. Therefore,∑

i S
z
i S

z
i+1 |j〉 = (n− 3)/4− 2/4, and:

H |j〉 = −J
n−1∑
i=1

Si · Si+1 |j〉 = −J
2

(|j + 1〉+ |j − 1〉)− J n− 5

4
|j〉 (67)

6.3. Your last result shows that the states |1〉, |2〉, · · · |n〉 are closed under the action of H. Write

the matrix representation of H in this space.

Solution 6.3 (3 points). Writing the state vector for a generic ‘one-particle’ state |ψ〉 =
∑

i ci |i〉,
or as a column vector:

|ψ〉 =


c1

c2
...

cn

 , (68)

the Hamiltonian becomes:

H = −J
4


n− 5 2 0 0

2 n− 5 2 0 · · ·
0 2 n− 5 2

0 0 2 n− 5
...

. . .

 . (69)

An upward-pointing spin will travel backwards and forwards along the spin-chain like a free

particle moving in one dimension. ‘Really’, the particles are the stationary sites, and their spins

are behaving collectively. But this collective motion of spins has all the properties of a particle:

it has a mass, a momentum, quantized energy. It is most usefully thought of as a particle.

One take-away is that we can think of all particles as perhaps just being excitations of some fields.

This is the interpretation most commonly used in high energy physics.

You can identify your matrix as the finite difference approximation to the Hamiltonian for a particle.

Thus the excitations of the spin chain act like quantum mechanical particles, and obey the single
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particle Schrodinger equation. Single particle quantum mechanics emerges as an effective model of

the excitations of a spin chain.

Problem 7. Feedback

7.1. How long did this homework take?

7.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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