Hand in at beginning of next lecture

Problem 1. Occupation of an impurity state in silicon Suppose we have a piece of silicon with an impurity in it. This might be a chip inside your cell phone. Suppose the impurity has a potential which can trap an electron. We want to know how likely it is to have an electron bound there.
1.1. The electrons in the chip provide a bath with some chemical potential μ. The impurity state has some energy ϵ. There are two states of our impurity, occupied, and unoccupied. The occupied state has energy ϵ and number of particles 1 . In terms of these quantities, and the partition function \mathcal{Z}, what is the probability of having a single electron on the impurity?
\square
Solution 1.1.
1.2. The unoccupied state has zero energy and zero particles. What is the probability of having a no electrons on the impurity?

Solution 1.2.
$|\psi\rangle$
1.3. The partition function is defined so that the total probability is 1 . What is \mathcal{Z} ?

Solution 1.3.
1.4. What is the average number of particles on the impurity?

Solution 1.4.

Problem 2. Occupation of an impurity state in liquid Helium

Suppose we instead had an attractive potential on the wall of a container of liquid helium. Imagine the impurity state again has some energy ϵ. Since these are bosons you could put more than one of them on the site. If we neglect interactions, the energy of having n atoms in the state is $n \epsilon$.
2.1. In terms of ϵ, μ, T, and \mathcal{Z}, what is the probability of having n atoms occupying the state?

Solution 2.1.
2.2. What is \mathcal{Z} ?

Solution 2.2.

2.3. What is the average number of particles on the impurity?

Solution 2.3.

These two results [2.3 and 1.4] are really important, as the results hold for any state - not just an impurity. Of course, it neglects interaction - but this is the way that one typically starts modeling a system of many particles. For example, in a gas of Rubidium atoms in an atomic trap, one expects that the number of particles with momentum k is

$$
\begin{equation*}
n_{k}=\frac{1}{e^{-\beta\left(k^{2} / 2 m-\mu\right)}-1} . \tag{1}
\end{equation*}
$$

You can use this to calculate all of the thermodynamic quantities (pressure, density, energy density...)

