

PHYS 3317: linear Operators Thursday Aug 23, 2018

Hand in at beginning of next lecture

Problem 1. Quantum Operators

In Quantum Mechanics, physical observables are associated by operators \hat{O} which act on the wavefunctions $\psi(x)$. For example, the operator \hat{x} is defined by

 $(\hat{x}\psi)(x) = x\psi(x).$

Note, we use the same symbol here for the operator and the argument of the wavefunction. This is confusing. These operators are *linear*, meaning that for any two wavefunctions $\psi(x)$ and $\phi(x)$, one must have $\hat{O}(a\psi + b\phi) = a\hat{O}\psi + b\hat{O}\phi$. Prove that \hat{x} is linear.

Solution 1.1.

Problem 2. What (real space) wavefunction is an eigenvector of \hat{x} with eigenvalue x_0 ?

Solution 2.1.

Problem 3. Momentum Operators

The momentum operator is defined by

 $(\hat{p}\psi)(x) = -i\hbar\psi'(x).$

Prove that the momentum operator is linear.

Solution 3.1.

Problem 4. What (real space) wavefunction is an eigenvector of \hat{p} with eigenvalue p_0 ?

Solution 4.1.