
 PHYS 3317: Maxwell's Equations in 2+1D

Hand in at beginning of next lecture

Problem 1. Constituent Equation
In $2+1 \mathrm{D}$ electromagnetism there are three physical fields

$$
\begin{align*}
S_{t} & =F_{x y}=\partial_{x} A_{y}-\partial_{y} A_{x} \tag{1}\\
S_{y} & =F_{t x}=\partial_{t} A_{x}-\partial_{x} A_{t} \tag{2}\\
S_{x} & =F_{y t}=\partial_{y} A_{t}-\partial_{t} A_{y} . \tag{3}
\end{align*}
$$

Show that

$$
\begin{equation*}
\partial_{t} S_{t}+\partial_{x} S_{x}+\partial_{y} S_{y}=0, \tag{4}
\end{equation*}
$$

Solution 1.1.

Problem 2. Light in 2D

2.1. In the absence of matter, the 2D Maxwell equations read

$$
\begin{align*}
\partial_{x} S_{y}-\partial_{y} S_{x} & =0 \tag{5}\\
-\partial_{y} S_{t}-\partial_{t} S_{y} & =0 \tag{6}\\
\partial_{t} S_{x}+\partial_{x} S_{t} & =0 \tag{7}\\
\partial_{t} S_{t}+\partial_{x} S_{x}+\partial_{y} S_{y} & =0 \tag{8}
\end{align*}
$$

Make the ansatz

$$
\begin{equation*}
S_{\nu}(x, y, t)=S_{\nu} e^{-i \omega t+i k_{x} x+i k_{y} y} \tag{9}
\end{equation*}
$$

to find the dispersion relationship.

Solution 2.1.

2.2. For a given $\overrightarrow{\mathbf{k}}$, how many modes are there? What is the physical interpretation?

Solution 2.2.
| $\psi\rangle$
2.3. A somewhat more complicated way to do the same calculation is to work with the potentials A_{x}, A_{y}, A_{t}. This more complicated approach will come in handy on Thursday. Write Eq. (5) in terms of A.

Solution 2.3.
2.4. Make the ansatz

$$
\begin{equation*}
A_{\nu}(x, y, t)=A_{\nu} e^{-i \omega t+i k_{x} x+I k_{y} y} \tag{10}
\end{equation*}
$$

and fill in the boxes below.

Solution 2.4. .

$|\psi\rangle$
2.5. Show that

$$
\left(\begin{array}{c}
-k_{y} \tag{11}\\
k_{x} \\
0
\end{array}\right)
$$

is an eigenvector of this matrix. What is its eigenvalue?

Solution 2.5.

2.6. Can this eigenvalue ever be zero? Under what circumstances? Give a physical interpretation.
\square

Solution 2.6.
2.7. Show that

$$
\left(\begin{array}{c}
k_{x} \tag{12}\\
k_{y} \\
-\omega
\end{array}\right)
$$

is an eigenvector of this matrix. What is its eigenvalue?
\square
Solution 2.7.
2.8. Can this eigenvalue ever be zero? Under what circumstances? Give a physical interpretation.
\square
2.9. Show that

$$
\left(\begin{array}{c}
k_{x} \omega \tag{13}\\
k_{y} \omega \\
k^{2}
\end{array}\right)
$$

is an eigenvector of this matrix. What is its eigenvalue?

Solution 2.9.
2.10. Can this eigenvalue ever be zero (for real ω)?

Solution 2.10.

