PHYS 3317: Commutation Relationships

Thursday Aug 30, 2018

Hand in at beginning of next lecture
Problem 1. Operator identities.
We say that two operators A and B are the same if for every function $\psi(x)$

$$
\begin{equation*}
(A \psi)(x)=(B \psi)(x) \tag{1}
\end{equation*}
$$

1.1. Prove that $[x, p]=x p-p x=i \hbar$, where $p=(\hbar / i) \partial_{x}$ is the momentum operator.

Solution 1.1.

Operator identities like this simplify calculations.
1.2. Calculate $\left[x, p^{2}\right]$.

Solution 1.2.

Problem 2. Commutator identities.
2.1. Prove that $[A, B C]=B[A, C]+[A, B] C$

Solution 2.1.

2.2. Prove that $[A B, C]=A[B, C]+[A, C] B$

Solution 2.2.

Problem 3. Bonus Problem. (Do on separate page - just for fun, no credit)
3.1. Use Taylor's theorem to prove that for any constant a,

$$
\begin{equation*}
e^{a \partial_{x}} f(x)=f(x+a), \tag{2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
e^{i a p} f(x)=f(x+a) . \tag{3}
\end{equation*}
$$

3.2. Use this result to show that

$$
\begin{equation*}
\left[e^{i a p}, x\right]=a e^{i a p} \tag{4}
\end{equation*}
$$

