Hand in at beginning of next lecture

In a simplified model of ammonia, the nitrogen atom can be in one of two places. The amplitude that it is on the left is ψ_{L}. The amplitude that it is on the right is ψ_{R}. We argued by symmetry that the equations of motion had to be of the form

$$
i \partial_{t}\binom{\psi_{L}(t)}{\psi_{R}(t)}=\left(\begin{array}{cc}
a & b \tag{1}\\
b & a
\end{array}\right)\binom{\psi_{L}(t)}{\psi_{R}(t)} .
$$

We want to solve this differential equation with the initial conditions $\psi_{L}(0)=1$ and $\psi_{R}(0)=0$.

Problem 1.

1.1. The eigenvectors of the matrix

$$
H=\left(\begin{array}{ll}
a & b \tag{2}\\
b & a
\end{array}\right)
$$

are

What are the eigenvalues E_{+}and E_{-}? [Note, the notation $|+\rangle$is a common way to denote a column vector in an abstract state space. Physicist like to reserve the notations \vec{v} or \mathbf{v} for three dimensional vectors.]

Solution 1.1.

Problem 2. We can write

$$
\begin{equation*}
|\psi(t)\rangle=\binom{\psi_{L}(t)}{\psi_{R}(t)}=\alpha(t)|+\rangle+\beta(t)|-\rangle \tag{4}
\end{equation*}
$$

2.1. Prove that if $\alpha|+\rangle+\beta|-\rangle=\gamma|+\rangle+\delta|-\rangle$, then $\alpha=\gamma$ and $\beta=\delta$. This is known as the uniqueness of the eigenstate expansion.

Solution 2.1.

2.2. At time $t=0$, the nitrogen atom is on the left: $\psi_{L}(0)=1$ and $\psi_{R}(0)=0$. Find $a(0)$ and $b(0)$.
\square
Solution 2.2.

Problem 3.

3.1. Substitute Eq. (4) this into Eq. 1, and use the uniqueness of the eigenstate expansion, to find differential equations for $a(t)$ and $b(t)$.

Solution 3.1.
3.2. Solve these differential equations, and use the initial conditions to find $a(t)$ and $b(t)$.

Solution 3.2.

戠 $\psi\rangle$

Problem 4.
4.1. What is the probability that at time t the Nitrogen atom is on the right?

Solution 4.1.

