

Hand in at beginning of next lecture

Problem 1. Integrating the Linearized Equations

Consider an ammonia atom. The amplitude of being in the ground state with energy $E_s = -\Delta$ is a(t), while the amplitude of being in the excited state with energy $E_a = \Delta$ is b(t). At time t = 0, a = 0 and b = 1. We argued that in the presence of an oscillatory electric field, the equations of motion for these coefficients are

$$i\hbar\partial_t \left(\begin{array}{c} a\\ b\end{array}\right) = \left(\begin{array}{cc} E_s & \epsilon\cos(\nu t)\\ \epsilon\cos(\nu t) & E_a\end{array}\right) \left(\begin{array}{c} a\\ b\end{array}\right),$$
(1)

where $2\epsilon \cos(\nu t)$ is the energy difference between the left and right states induced by the oscillating electromagnetic field. We will solve this assuming ϵ is small. We will assume that the solutions to this equation can be expressed as a Taylor series in ϵ ,

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a^{(0)} \\ b^{(0)} \end{pmatrix} + \epsilon \begin{pmatrix} \delta a \\ \delta b \end{pmatrix} + \cdots$$
 (2)

where the neglected terms are higher order in ϵ . Our initial conditions read $a^{(0)}(t=0) = 0$, $\delta a(t=0) = 0, b^{(0)}(t=0) = 1, \delta b(t=0) = 0$.

1.1. Substitute Eq. (2) into Eq. (1), and collect the terms which are independent of ϵ , and the terms which are linear in ϵ .

Solution 1.1.

1.2. Solve the ϵ independent equations to find $a^{(0)}(t)$ and $b^{(0)}(t)$

Solution 1.2.

1.3. Substitute these "zero-th order" solutions into the first order equations to show that

$$i\hbar\partial_t \delta a(t) = E_s \delta a(t) + \epsilon \cos(\nu t) e^{-iE_a t/\hbar}.$$
(3)

Solution 1.3.

1.4. Show that the solution to Eq. (3) is

$$a(t) = A[e^{i(\hbar\nu - E_a)t/\hbar} - e^{-iE_st/\hbar}] + B[e^{-i(\hbar\nu + E_a)t/\hbar} - e^{-iE_st/\hbar}],$$
(4)

and find A and B.

Solution 1.4.

1.5. We define the detuning $\delta = E_a - E_s - \hbar \nu$. If δ is small compared to $E_a - E_s$, show that one then has $B \gg A$.

Solution 1.5.

1.6. Neglecting the B term, what is the probability of being in the symmetric state as a function of time?

Solution 1.6.