##  <br> PHYS 3317: Two-level systems

Hand in at beginning of next lecture

Consider three Hermitian operators corresponding to possible measurements

$$
\begin{align*}
S_{z} & =\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)  \tag{1}\\
S_{120} & =\frac{1}{4}\left(\begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right) .  \tag{2}\\
S_{-120} & =\frac{1}{4}\left(\begin{array}{cc}
-1 & -\sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right) . \tag{3}
\end{align*}
$$

Their eigenvalues are $\pm 1 / 2$, with eigenvectors

$$
\begin{align*}
|\uparrow\rangle & =\binom{1}{0}  \tag{4}\\
|\downarrow\rangle & =\binom{0}{1}  \tag{5}\\
\left|\uparrow 120^{\circ}\right\rangle & =\binom{1 / 2}{\sqrt{3} / 2}  \tag{6}\\
\left|\downarrow 120^{\circ}\right\rangle & =\binom{\sqrt{3} / 2}{-1 / 2}  \tag{7}\\
\left|\uparrow-120^{\circ}\right\rangle & =\binom{1 / 2}{-\sqrt{3} / 2}  \tag{8}\\
\left|\downarrow-120^{\circ}\right\rangle & =\binom{\sqrt{3} / 2}{1 / 2} . \tag{9}
\end{align*}
$$

## Problem 1.

1.1. Suppose I prepare a two-level system in state $|\uparrow\rangle$ I then measure it at $120^{\circ}$. What possible results can I find, and with what probabilities?
$\square$
Solution 1.1.
1.2. Suppose I prepare a two-level system in state $\left|\uparrow 120^{\circ}\right\rangle$ I then measure it at $-120^{\circ}$. What possible results can I find, and with what probabilities?

Solution 1.2.

