
P3317 HW from Lecture 1 and Recitation 1

Due Tuesday September 4

Two atoms are walking down the street.

Atom 1: I think I lost an electron.

Atom 2: Are you sure?

Atom 1: Yes, I am positive.

Problem 1. Ion Detector An experimentalist drops helium ions onto a multichannel plate (this is

like a digital camera that looks at ions instead of photons – look it up on Wikipedia – its actually a

really cool application of quantum mechanics – they are also sensitive to UV photons, so they make

night vision goggles from them). We will assume that the detector has 100% quantum efficiency

(that means that whenever an ion hits it, one gets a count). We also will assume that it has no

“dark current,” meaning that we never get a count if there are no ions hitting the detector. Usually

these are two dimensional devices (like a camera).

Note: This is not a trick problem, it is supposed to be easy. If it does not seem easy, then you

should ask for clarification.

1.1. Can this device simultaneously measure the x-position and the y-position of an ion? Explain

how this is consistent with the idea that in quantum mechanics one cannot always measure two

quantities simultaneously. What does this tell you about the commutation relationship between

the x and y operators?

Solution 1.1 (1 pt). Yes, the device can simultaneously measure the x- and y-coordinates. This

is equivalent to the mathematical statement [x,y] = 0, i.e. if two operators commute then one

can simulaneously measure the quantities associated with these operators.

1.2. An ion hits the plate. At the time of contact, it has a wavefunction ψ(x, y) = (1/
√

2)(φ1(x, y)+

φ2(x, y)), where

φ1(x, y) =

{
1√
πd2

if x2 + y2 < d2

0 otherwise
(1)

φ2(x, y) =

{
1√
πd2

if (x− a)2 + y2 < d2

0 otherwise
(2)

Here d = 1µm, and a = 1mm. (a) Show that ψ is properly normalized. (b) How many counts

will the microchannel plate detect? (c) Explain where the microchannel plate will say the ion is

located.
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Solution 1.2. (a) [1 pt] Let’s call S1 the disk of radius d centered at the origin and S2 the disk of

radius d centred at (a, 0). Notice that since a > 2d, S1 and S2 do not overlap. Since φ1(x, y)

is nonzero only in S1 and φ2(x, y) only in S2, this implies that they do not overlap and so

φ∗1(x, y)φ2(x, y) = 0. The normalization condition then states

1 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy |Ψ(x, y)|2

=
1

2

∫ ∞
−∞

dx

∫ ∞
−∞

dy(φ∗1 + φ∗2)(φ1 + φ2)

=
1

2

∫ ∞
−∞

dx

∫ ∞
−∞

dy|φ1|2 + |φ2|2

=
1

2

∫
S1

1

πd2
+

∫
S2

1

πd2
= 1

(3)

In the third step we have used the fact that φ1 and φ2 do not overlap to eliminate cross terms.

In the final step we have used the fact that the wavefunctions are constant in their respective

disks, but zero outside.

(b) [1 pt] One count will be detected, since there is only one ion.

(c) [1 pt] The ion has a 50% chance of being detected on S1 and a 50% chance of being detected

on S2. To see this, the probability of being detected on S1 is given by

P (S1) =

∫
S1

|Ψ|2 = 0.5 (4)

The same can be shown for S2.

Problem 2. Finite Differences in Time A very powerful technique (which we will explore at

length in this course) is to treat space and time as discrete instead of continuous. An example we

will explore at length in lecture 4 is the case of Ammonia (and if you want more details you can

read the lecture notes). In ammonia, a Nitrogen atom has two locations in space where it can be.

To describe its quantum state, we just need to specify the amplitude for the atom to be in each

of the locations: ψ0 and ψ1, which you can think of as ψ(r0) and ψ(r1). The physical meaning of

|ψ0|2 and |ψ1|2 are the probabilities that the particle is in each of the two locations. If you want to

connect this with problem 1, you could imagine

ψ(x, y) =


ψ0√
πd2

if (x− x0)2 + (y − y0)2 < d2

ψ1√
πd2

if (x− x1)2 + (y − y1)2 < d2

0 otherwise

(5)

The time dependent Schrodinger equation is a linear differential equation which is first order in
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time. In lecture 4 we will argue that the correct form for ammonia is(
i~∂tψ0(t)

i~∂tψ1(t)

)
=

(
A B

B∗ D

)(
ψ0(t)

ψ1(t)

)
(6)

where A,B,B∗, and D are parameters which define the Hamiltonian – B∗ is the complex conjugate

of B. For simplicity we will consider the case A = D = 0 and B = −1, and use units where ~ = 1.

As we will discuss, this is a good model for Ammonia. The coefficient B represents a tunneling

process. It allows the particle to move from point r0 to point r1 and back.

In this problem we will solve this differential equation. This is pretty easy when we are dealing

with 2× 2 matrices, but for systems with more degrees of freedom it starts to become difficult. To

help, we will introduce a general method for putting equations like this on a computer: the finite

difference approximation. In particular, we will relate ψ0(t+ δt) and ψ1(t+ δt) to ψ0(t) and ψ1(t).

In the next few homeworks we will investigate various different possible discretizations. We will

find one of them, the “unitary semi-implicit method” to be better than the others. We will use this

unitary finite difference approach in recitations 3 and 4.

2.1. Exact Solution Solve the differential equations

iψ′0(t) = −ψ1(t) (7)

iψ′1(t) = −ψ0(t) (8)

with the initial conditions

ψ0(0) = 1 (9)

ψ1(0) = 0. (10)

You may find it easier to first eliminate ψ1, and write a second order differential equation for ψ0.
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Solution 2.1 (2 points). We are given

iψ′0(t) = −ψ1(t) (11)

iψ′1(t) = −ψ0(t) (12)

We can differentiate (25) one more time and substitute in (26), and vice versa, to obtain two

uncoupled differential equations:

ψ′′0(t) = −ψ0(t) (13)

ψ′′1(t) = −ψ1(t) (14)

These are the simple harmonic oscillator equations, so we expect the most general solution to be

of the form:

ψ0(t) = Peit +Qe−it (15)

ψ1(t) = Reit + Se−it (16)

where P , Q, R and S are complex coefficients. EQs. (25) and (26) implies that P = R and

Q = −S. The initial conditions then imply that

P +Q = 1 (17)

P −Q = 0 (18)

So we find that P = Q = 1
2 . Therefore, the solutions are

ψ0(t) =
1

2
eit +

1

2
e−it = cos(t) (19)

ψ1(t) =
1

2
eit − 1

2
e−it = i sin(t) (20)

2.2. Deriving Forward Euler We will now consider an approximation to Eq. (7). We will turn

this differential equation into a difference equation via Taylor’s theorem. Recall

f(t+ δt) = f(t) + δtf ′(t) +
(δt)2

2!
f ′′(t) + · · · . (21)

If δt is small, we can truncate this at the second term, approximating

f(t+ δt) ≈ f(t) + δtf ′(t), (22)

or equivalently

f ′(t) ≈ f(t+ δt)− f(t)

δt
. (23)

Taking f = ψ0 and f = ψ1, we can substitute this expression into EQ. (7) to get an equation of

the form (
ψ0(t+ δt)

ψ1(t+ δt)

)
= M

(
ψ0(t)

ψ1(t)

)
, (24)

where M is a 2× 2 matrix. Find M.
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Solution 2.2 (2 points). We rewrite (7) as

i
ψ0(t+ δt)− ψ0(t)

δt
= −ψ1(t) (25)

i
ψ1(t+ δt)− ψ1(t)

δt
= −ψ0(t) (26)

A little bit of manipulation gives you(
ψ0(t+ δt)

ψ1(t+ δt)

)
=

(
1 iδt

iδt 1

)(
ψ0(t)

ψ1(t)

)
(27)

Therefore,

M =

(
1 iδt

iδt 1

)
(28)

2.3. Solving the Forward Euler Equations – the eigenvalue problem: From EQ. (24), one

has (
ψ0(Nδt)

ψ1(Nδt)

)
= MN

(
ψ0(0)

ψ1(0)

)
(29)

We would like to have a closed form expression for ψ0(Nδt) and ψ1(Nδt) when ψ0(0) = 1 and

ψ1(0) = 0. [If we were doing this on a computer it would be trivial – we just do a bunch of matrix

multiplications. Here, however, we want to do it by hand.]

There are several approaches to this sort of problem, but one classic approach starts with finding

the eigenvalues λ, λ′ and eigenvectors of M:

M

(
a0

a1

)
= λ

(
a0

a1

)
(30)

and

M

(
b0

b1

)
= λ′

(
b0

b1

)
. (31)

One then finds coefficients A and B such that(
ψ0(0)

ψ1(0)

)
= A

(
a0

a1

)
+B

(
b0

b1

)
. (32)

Matrices are linear operators, so

Mn

(
ψ0(0)

ψ1(0)

)
= AMn

(
a0

a1

)
+BMn

(
b0

b1

)
. (33)

We can now use EQ. (30) and (31) to get

Mn

(
ψ0(0)

ψ1(0)

)
= A(λ)n

(
a0

a1

)
+B(λ′)n

(
b0

b1

)
. (34)

Find λ, λ′, a0, a1, b0, b1.
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Solution 2.3 (2 points). We want to find the right eigenvectors and eigenvalues of M. We first

solve
0 = |M− xI|

=

∣∣∣∣∣ 1− x iδt

iδt 1− x

∣∣∣∣∣
= (1− x)2 + (δt)2

(35)

for x to find the eigenvalues. We find two solutions

λ = 1 + iδt

λ′ = 1− iδt
(36)

The eigevectors (note: not normalised) are(
a0

a1

)
=

(
1

1

)
for λ(

b0

b1

)
=

(
1

−1

)
for λ′

(37)

2.4. Find A and B.

Solution 2.4 (1 point). (
ψ0(0)

ψ1(0)

)
=

(
1

0

)
= A

(
1

1

)
+B

(
1

−1

)
(38)

We then find that A = B = 1
2 .

2.5. Find ψ0(Nδt) and ψ1(Nδt).

Solution 2.5 (1 point). Using the formula given in the question, we find that(
ψ0(Nδt)

ψ1(Nδt)

)
=

1

2
(1 + iδt)N

(
1

1

)
+

1

2
(1− iδt)N

(
1

−1

)

=
1

2

(
(1 + iδt)N + (1− iδt)N

(1 + iδt)N − (1− iδt)N

) (39)

2.6. Comparison We want to understand how good our approximation is. Use a computer to

make a plot which has time on the horizontal axis, and |ψ0|2 on the vertical axis. Plot the exact

result for 0 < t < 10π. Also plot the result of the Forward Euler Approximation, using timesteps

δt = 0.1 and δt = 0.01. Properly label the axes, and include a legend.

-6



Solution 2.6 (4 points). – 1 point for properly labeling graph – x-axis labeled as time or t, y-axis

labled as |ψ0|2 or P0 or equivalent, tick marks. 1-point for having the exact curve. 1-point for the

discrete results. 1-point for legend. OK to make two separate plots for the different δt’s, or to

put them on one graph.

Problem 3. Gaussian Integrals

3.1. What is ∫ ∞
−∞

dx e−αx
2
? (40)

No need to show your work.

Solution 3.1 (1 point). ∫ ∞
−∞

dx e−αx
2

=

√
π

α
(41)

See any standard mathematics textbook for the derivation.

3.2. What is ∫ ∞
−∞

dx e−α(x− a
2α)

2

? (42)

No need to show your work. [Hint: x is a dummy variable.]

Solution 3.2 (1 point). Let x′ = x− a
2α .∫ ∞

−∞
dx e−α(x−

a
2α

)2 =

∫ ∞
−∞

d
(
x′ +

a

2α

)
e−αx

′2

=

∫ ∞
−∞

dx′ e−αx
′2

=

√
π

α

(43)

3.3. What is ∫ ∞
−∞

dx e−αx
2−ax? (44)

No need to show your work. [Hint: You can calculate this in one or two lines from your results in

3.2]
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Solution 3.3 (1 point). ∫ ∞
−∞

dx e−αx
2−ax =

∫ ∞
−∞

dx e−α(x+
a
2α

)2+ a2

4α

= e
a2

4α

∫ ∞
−∞

dx e−α(x+
a
2α

)2

= e
a2

4α

√
π

α

(45)

In the first step, we completed the square for the exponent. In the last step, we used the results

from Part 3.2.

3.4. Taylor expand your expression from Eq. (3.3) in powers of a about a = 0.

Solution 3.4 (1 point).

e
a2

4α

√
π

α
=

√
π

α

(
1 +

a2

4α
+

1

2!

(
a2

4α

)2

+ ...+
1

n!

a2n

(4α)n
+ ...

)
(46)

3.5. The integral in Eq. 44 can be written as∫ ∞
−∞

dx e−αx
2−ax =

∑
j

aj

j!

∫ ∞
−∞

dxxje−αx
2
. (47)

By uniqueness of the Taylor expansion you can equate the coefficients of the powers of a in this

expansion with the equivalent terms in 3.4. Use this equality to find

I2n =

∫ ∞
−∞

dxx2ne−αx
2
. (48)

You may find it helpful to tattoo this answer on your fore-arm. You will use this again, and you

do not want to have to derive it every time you use it.

Solution 3.5 (1 point). We are given∫ ∞
−∞

dx e−αx
2−ax =

∑
j

aj

j!

∫ ∞
−∞

dxxje−αx
2

(49)

We now compare this with the results we got from Part 3.4.√
π

α

1

n!

a2n

(4α)n
=

a2n

(2n)!

∫ ∞
−∞

dxx2ne−αx
2

(50)

This implies that

I2n =

∫ ∞
−∞

dxx2ne−αx
2

=

√
π

α

(2n)!

n!

1

(4α)n
(51)

By symmetry is is clear that I2n+1 = 0.
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Problem 4. Dirac delta function The Dirac delta function δ(x) is what the mathematicians

refer to as a “distribution”. For them it is an object which really only makes sense inside an

integral. We are physicists, though, so we will think of it as a function (or the limit of a function).

The defining characteristic of the delta function is that for any function f(x),∫ b

a
dx f(x)δ(x) = f(0), (52)

as long as a < 0 < b. Crudely, δ(x) is zero if x 6= 0 but is infinite when x = 0.

The simplest representation of the dirac delta function is as a limit of a “hat function”. We define

δs(x) =

{
1/s −s/2 < x < s/2

0 otherwise
(53)

We then define δ(x) = lims→0 δs(x).

4.1. For any well behaved function f(x), we can Taylor expand near x = 0, and write

f(x) = f0 + f1x+ f2x
2 + · · · . (54)

In terms of the coefficients of this Taylor series (keeping only up to second order) calculate

Is =

∫ ∞
−∞

dx f(x)δs(x). (55)

Solution 4.1 (1 point).

Is =

∫ s/2

−s/2

dx

s
f0 + f1x+ f2x

2 + · · · (56)

= f0 + f2
2

3s
(s/2)3 + · · · (57)

= f0 +
f2
12
s2 + · · · . (58)

4.2. Find

lim
s→0

Is. (59)

Solution 4.2 (1 point). As s→ 0, Is → f0.

4.3. In class I mentioned that the square of a delta function is poorly behaved. Calculate

Js =

∫ ∞
−∞

dx δs(x)2. (60)

Solution 4.3 (1 point).

Js =

∫ s/2

−s/2

dx

s2
(61)

=
1

s
. (62)
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4.4. Find

lim
s→0

Js. (63)

Solution 4.4 (1 point).

lim
s→0

Js =∞. (64)

4.5. There are a number of useful delta-function identities. By using a change of variables in the

limit, show that for any positive number α,

δ(αx) =
δ(x)

α
. (65)

Solution 4.5 (1 point).

δs(αx) =

{
1/s −s/2 < αx < s/2

0 otherwise
(66)

=

{
1
α(α/s) −s/(2α) < x < s/(2α)

0 otherwise
(67)

=
1

α
δs/α(x). (68)

We then take

δ(αx) = lim
s→0

δs(αx) (69)

=
1

α
lim

s/α→0
δs/α(x) (70)

=
1

α
δ(x). (71)

4.6. Another useful representation of the delta-function is as the limit of a Lorentzian:

δ̃s(x) =
1

π

s

x2 + s2
. (72)

We can define δ(x) = lims→0 δ̃s(x).

Make a properly labeled graph of δ̃s(x), taking s = 0.01. Choose the axes range to show the relevant

structure.
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Solution 4.6 (3 points). 1 point for axes labels, 1 point for curve, 1 point for choosing a reasonable

scale.

-0.10 -0.05 0.05 0.10
x

5

10

15

20

25

30

s

π s2 + x2

4.7. What is δ̃s(x = 0)?

Solution 4.7 (1 point).

δ̃s(x = 0) =
1

πs
(73)

4.8. At what value of x is δ̃s(x) = δ̃s(0)/2? From that result, give a reasonable expression for the

“width” of δ̃s(x).

Solution 4.8 (1 point). We want to find x such that

1

π

s

x2 + s2
=

1

2πs
. (74)

This happens when x = s – which defines the width of the function.

4.9. From those results we see that δ̃s(x) is sharply peaked about x = 0 – falling off on a length-

scale of order s. If we take s sufficiently small, then any reasonable f(x) will be roughly constant

over this regime and

Ĩs =

∫ ∞
−∞

dx f(x)δ̃s(x) ≈ f(0)

∫ ∞
−∞

dx δ̃s(x). (75)

Evaluate this last integral to estimate Ĩs. Feel free to use integral tables or computerized algebra

systems for doing these integrals.
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Solution 4.9 (1 point). ∫ ∞
−∞

dx δ̃s(x) =
1

π

∫ ∞
−∞

dxs

x2 + s2
(76)

=
1

π

∫ ∞
−∞

dt

t2 + 1
, (77)

where we have made the substitution t = x/s. This is an elementary integral: you can either do

it with the trig substitution t = tan(θ), or use partial fractions, and the residue theorem. [Or just

look it up in a table.] Regardless you will find∫ ∞
−∞

dx δ̃s(x) = 1, (78)

and hence

Ĩs ≈ f(0). (79)

4.10. Yet another common representation is

δ̄s(x) =
s

π

sin2(x/s)

x2
. (80)

Make a properly labeled graph of δ̄s(x), taking s = 0.01. Choose the axes range to show the relevant

structure.

Solution 4.10 (3 points). 1 point for axis labeling, 1 point for curve, 1 point for choosing range.

-0.10 -0.05 0.05 0.10
x

5

10

15

20

25

30

s sin2 x
s


π x2

4.11. Again, δ̄s(x) is sharply peaked about x = 0 – falling off on a length-scale of order s. If we

take s sufficiently small, then f(x) will be roughly constant over this regime and

Īs =

∫ ∞
−∞

dx f(x)δ̄s(x) ≈ f(0)

∫ ∞
−∞

dx δ̄s(x). (81)

Evaluate this last integral to estimate Īs. Feel free to use integral tables or computerized algebra

systems for doing these integrals.
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Solution 4.11 (1 point). ∫ ∞
−∞

dx δ̄s(x) =
1

π

∫ ∞
−∞

dx
s sin2(x/s)

x2
(82)

=
1

π

∫ ∞
−∞

dt
sin2 t

t2
. (83)

There are a number of nice tricks for doing this integral. You can use complex analysis, Parseval’s

theorem, differentiating under the integral... [Or just look it up in a table.] Regardless the answer

comes out to 1. Hence

Īs ≈ f(0) (84)

Problem 5. Feedback

5.1. How long did this homework take?

5.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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