
P3317 HW from Lecture 2+3 and Recitation 2

Due Tuesday September 11

Q: What is polite and works for the phone company?

A: A deferential operator.

Problem 1. Gross-Pittaevskii Equation In class we modeled an atomic gas by saying that

each particle was described by the same single particle wavefunction, ψ(x), and that wavefunction

obeyed the standard Schrodinger equation,

i~∂tψ(x) = − ~2

2m
∂2
xψ(x) + V (x)ψ(x), (1)

where V (x) is the applied potential. This approach neglects the interactions between the particles.

The simplest way to account for those interactions is to argue that each particle feels a potential

created by the others. Since atomic interactions tend to be short ranged, one typically assumes

i~∂tψ(x) = − ~2

2m
∂2
xψ(x) + Veff(x)ψ(x), (2)

Veff(x) = V (x) + gn(x), (3)

where g is a constant which depends on the atom. In class we argued that n(x) ∝ |ψ(x)|2. In

particular n(x) = N |ψ(x)|2, where N is the total number of particles. This then leads to the

non-linear Schrodinger equation,

i~∂tψ(x) = − ~2

2m
∂2
xψ(x) + V (x)ψ(x) + gN |ψ(x)|2ψ(x). (4)

This is also known as the Gross-Pittaevskii equation. We will analyze this equation in the same

way we analyzed the Schrodinger equation in the “continuity worksheet” from lecture 3. It may

help to refer to that worksheet. As in that exercise, our goal is to interpret the equations of motion

in terms of fluid dynamics.

1.1. Write the complex wavefunction as an amplitude and a phase

ψ(x, t) = f(x, t)eiφ(x,t), (5)

where both f and φ are real. Substitute this ansatz into the Gross-Pitaevskii equation, multiply

by e−iφ and take the real and imaginary parts to get two equations.
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Solution 1.1. Making the substitution, we get:

i~∂t
(
feiφ

)
= − ~2

2m
∂2
x

(
feiφ

)
+ V (x)feiφ + hNf3eiφ (6)

i~
(
ḟ + if φ̇

)
eiφ = − ~2

2m
∂x

[(
f ′ + iφ′f

)
eiφ
]

+ V feiφ + gNf3eiφ (7)(
i~ḟ − ~fφ̇

)
eiφ = − ~2

2m

(
f ′′ + iφ′′f + 2iφ′f ′ − φ′2f

)
eiφ + V feiφ + gNf3eiφ (8)

i~ḟ − ~fφ̇ = − ~2

2m

(
f ′′ + iφ′′f + 2iφ′f ′ − φ′2f

)
+ V f + gNf3, (9)

where a dot indicates a time derivative, and a prime indicates an x derivative. The real part gives:

~fφ̇ =
~2

2m

(
f ′′ − φ′2f

)
− V f − gNf3, (10)

while the imaginary part gives:

ḟ = − ~
2m

(
φ′′f + 2φ′f ′

)
. (11)

1.2. Show that one of these two equations can be interpreted as a continuity equation. Under this

interpretation, what is the local velocity v?

Solution 1.2. Multiplying Eq. (11) by f gives:

ḟf = − ~
2m

(
φ′′f2 + 2φ′f ′f

)
1

2
∂t(f

2) = −∂x
(

~
2m

f2φ′
)
.

(12)

This has the form of the continuity equation:

∂tρ = −∇ · (ρ~u) (13)

if we make the identifications:

ρ = f2, vx =
~
m
∂xφ. (14)

In other words, the modulus squared behaves as a (probability) density, with the spatial variation

of the phase measuring its ‘fluid velocity’.

1.3. The other equation can be rewritten as

∂tφ = − ~
2m

(∂xφ)2 +
~

2m

∂2
xf

f
− V

~
− gn

~
(15)

By differentiating this equation with respect to x it takes on the form of the one-dimensional Euler

equation from fluid dynamics

∂tv(x, t) +
1

2
∂xv

2(x, t) + ∂xp(x, t) = 0, (16)
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where p(x, t) is the local pressure. By identifying terms, what is the pressure of this interacting

gas? [Note: this gas is essentially at T = 0, so the ideal gas law would predict p = 0. Unlike an

ideal gas, interactions are very important here.]

Solution 1.3. The x derivative of Eq. (22) of the homework is given by:

∂tφ
′ = − ~

2m
∂t(φ

′2) +
~

2m

∂2
xf

f
− V

~
− gn

~
. (17)

Replacing φ′ by vm/~ from Eq. (14), and multiplying by a factor of ~/m, gives:

∂tv(x, t) +
1

2
∂x(v2) + ∂x

(
V (x)

m
+
gn(x)

m
− ~2

2m2

f ′′

f

)
. (18)

Therefore, we have that the pressure is given by the final term:

p(x, t) =
V (x)

m
+
gn(x)

m
− ~2

2m2

f ′′

f
. (19)

The first term represents the external forces. The last term is sometimes called a ”quantum

pressure” – it represents the momentum spread which comes from trying to localize particles. The

second term is the contribution to pressure from interactions.

Problem 2. Consider the 1D time independent Schrodinger equation of a free particle:

− ~2

2m
∂2
xψ(x) = Eψ(x). (20)

This is a second order differential equation – thus it needs two boundary conditions to uniquely

define the eigenstates.

As a mathematics problem, there are several different Canonical choices of boundary conditions. In

your differential equations course, you may have seen the following boundary conditions in similar

equations:

Dirichlet: ψ(0) = 0 and ψ(L) = 0.

Neuman: ψ′(0) = 0 and ψ′(L) = 0

Homogeneous: ψ′(0) = κψ(0) and ψ′(L) = κψ(L), where κ is a constant.

Note Dirichlet and Neuman are special cases of homogeneous boundary conditions with κ = 0

and κ =∞.

Periodic: ψ(L) = ψ(0) and ψ′(0) = ψ′(L)

Antiperiodic: ψ(L) = −ψ(0) and ψ′(0) = −ψ′(L)
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Twisted: ψ(L) = eiφψ(0) and ψ′(0) = eiφψ′(L) where φ is a constant.

Note, Periodic and Antiperiodic are special cases of twisted boundary conditions with φ = 0

and φ = π.

In PHYS 3316 you probably only used one of these: Dirichlet boundary conditions, more commonly

known to physicists as “hard wall boundary conditions,” as it represents confinement by a very steep

potential. In recitation 2, you saw that in a finite difference approximation, you can incorporate

different boundary conditions into the matrix which gives you derivatives.

2.1. With “hard wall” boundary conditions: ψ(0) = 0,ψ(L) = 0. What are the energies of the

lowest 5 eigenstates of EQ. (20)? [Do this with pencil and paper – not the computer.]

Hint: The eigenstates are of the form ψ(x) = sin(kx). You just need to find k such that the

boundary condition is satisfied.

Solution 2.1. The solution is given by:

ψ(x) = sin(kx), with k =
sπ

L
, s = 1, 2, 3, ... (21)

for integer s ≥ 1. The general solution has a cos piece as well as a sin piece, but the boundary

conditions kill the cos. Plugging this into Schrodinger’s equation gives:

E =
~2

2m
k2 =

~2

2m

(sπ
L

)2
, (22)

and so the first five Eigenvalues are

E =
~2π2

2mL2
× {1, 4, 9, 16, 25} . (23)

2.2. Physically it is also reasonable to consider the quantum mechanics of a particle on a ring (say

manufactured in the Cornell Nanofabrication Facility). We will take L to be the circumference of

the ring, and x is the distance along the ring. In such a setting, we should use periodic boundary

conditions: ψ(0) = ψ(L) and ψ′(0) = ψ′(L). What are the energies E0, E1, · · ·E4 of the lowest 5

eigenstates?

Hint: The eigenstates are of the form ψ(x) = eikx, you just need to find k such that the boundary

condition are satisfied.
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Solution 2.2. This time, the solutions are:

ψ(x) = eikx, with k = ±2sπ

L
, s = 0,±1,±2,±3.... (24)

Note that compared with the previous solution: (a) there is a zero mode with zero energy, and (b)

the excited modes are twofold degenerate. This last fact corresponds to the presence of clockwise

and anti-clockwise travelling modes. The first five modes have energies:

E =
~2π2

2mL2
× {0, 4, 4, 16, 16} . (25)

Aside: zero modes and degeneracy

In order to see why there is no s = 0 mode in the hard boundary case, consider what would be the

corresponding eigenfunction:

ψhard
s=0

?
= sin(0x) = 0. (26)

This is clearly not a normalizable state: it is not a state at all. Therefore, the energy levels of the

hard box start at n = 1. In the periodic case, the zero mode is:

ψperiodic
s=0 = ei0x = const. (27)

This is normalizable, and satisfies Schrodinger’s equation with E = 0. It is therefore the lowest

lying energy state of the particle on a ring.

The reason that the hard box does not have degenerate states is that the states ±s differ only by

a constant phase:

sin
(
−sπx

L

)
= − sin

(sπx
L

)
= eiπ sin

(sπx
L

)
. (28)

They are therefore the same state. On the other hand, in the periodic case there are two distinct

states for each non-zero energy that cannot be related simply by multiplication by a phase:

eikx 6= eiφe−ikx, (29)

unless k = 0. Therefore, as long as k 6= 0 the energies come in pairs.

2.3. You should have found that the first excited state is two-fold degenerate when you have

periodic boundary conditions. That is E1 = E2. Prove that (ψ1 − ψ2)/(2i) is also an eigenstate,

with this same energy. [Note, this is a generic result. If you ever have two eigenstates with the

same eigenvalue, their sum is also an eigenstate.]
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Solution 2.3. We have that:

ψ1 − ψ2

2i
=
eikx − e−ikx

2i
= sin(kx). (30)

This also satisfies the Schrodinger equation, with E = ~2k2/2m:

− ~2

2m
∂2
x sin(kx) =

~2k2

2m
sin(kx). (31)

Although the question didn’t ask, you could also take

ψ1 + ψ2

2
=
eikx + e−ikx

2
= cos(kx). (32)

2.4. Clearly the individual energies depend on the different boundary conditions. On the other

hand, if you squint your eyes, the “coarse grained” spectra are very similar. More concretely,

calculate the sum of the first 5 energies Es = E0 +E1 +E2 +E3 +E4 in each of these cases. What

is the fractional difference (Eperiodic
s − Ehard

s )/(Eperiodic
s + Ehard

s )?

Solution 2.4. We have that:

Eperiodic
s =

~2π2

2L2m
(0 + 4 + 4 + 16 + 16) = 20

~2π2

L2m
(33)

Ehard
s =

~2π2

2L2m
(1 + 4 + 9 + 16 + 25) =

55

2

~2π2

L2m
, (34)

and therefore:
Eperiodic
s − Ehard

s

Eperiodic
s + Ehard

s

=
40− 55

40 + 55
= − 3

19
' −1

6
. (35)

This ratio gets smaller and smaller as you include more and more states. In the thermodynamic

limit the choice of boundary condition is irrelevant.

Problem 3. Finite Differences in Time – Part 2 Recall that last homework you were approx-

imating solutions to the differential equation(
i~∂tψ0(t)

i~∂tψ1(t)

)
=

(
0 −1

−1 0

)(
ψ0(t)

ψ1(t)

)
. (36)

With initial conditions ψ0(0) = 1, ψ1(0) = 0. Physically |ψ0|2 and |ψ1|2 are the probabilities of

finding the particle at positions r0 and r1.

3.1. Deriving Backward Euler Similar to what we did last week, we will turn this differential

equation into a difference equation via Taylor’s theorem. We will use a slightly different approxi-

mation though, this time we will use the following form of Taylor’s Theorem

f(t− δt) = f(t)− δtf ′(t) +
(δt)2

2!
f ′′(t) + · · · . (37)
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If δt is small, we can truncate this at the second term, approximating

f(t− δt) ≈ f(t)− δtf ′(t), (38)

or equivalently

f ′(t) ≈ f(t)− f(t− δt)
δt

. (39)

Taking f = ψ0 and f = ψ1, we can substitute this expression into EQ. (36) to get an equation of

the form

W

(
ψ0(t)

ψ1(t)

)
=

(
ψ0(t− δt)
ψ1(t− δt)

)
, (40)

where W is a 2× 2 matrix. Find W.

Solution 3.1. As was pointed out in an email, the ~ in Eq. (36) was erroneous. Keeping it

doesn’t change anything except the limit of the graph.

Starting from:

i∂t

(
ψ0(t)

ψ1(t)

)
=

(
0 −1

−1 0

)(
ψ0(t)

ψ1(t)

)
, (41)

we use Eq. (39) to get:

i

δt

(
ψ0(t)− ψ0(t− δt)
ψ1(t)− ψ1(t− δt)

)
=

(
0 −1

−1 0

)(
ψ0(t)

ψ1(t)

)
. (42)

Multiply through be −iδt and rearrange terms to get:(
0 −iδt
−iδt 0

)(
ψ0(t)

ψ1(t)

)
+

(
1 0

0 1

)(
ψ0(t)

ψ1(t)

)
=

(
ψ0(t− δt)
ψ1(t− δt)

)
(43)(

1 −iδt
−iδt 1

)(
ψ0(t)

ψ1(t)

)
=

(
ψ0(t− δt)
ψ1(t− δt)

)
. (44)

Therefore:

W =

(
1 −iδt
−iδt 1

)
. (45)

3.2. Solving the Backward Euler Equations – the eigenvalue problem: From EQ. (40),

one has (
ψ0(t = Nδt)

ψ1(t = Nδt)

)
= W−N

(
ψ0(0)

ψ1(0)

)
(46)

This means you find the inverse matrix W−1, which satisfies W−1W = 1, then raise it to the N ’th

power. We would like to have a closed form expression for ψ0(Nδt) and ψ1(Nδt) when ψ0(0) = 1

and ψ1(0) = 0. [If we were doing this on a computer it would be trivial – we just do a bunch of

matrix multiplications by the inverse matrix W−1. Here, however, we want to do it by hand.]
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There are several approaches to this sort of problem, but one classic approach starts with finding

the eigenvalues s, s′ and eigenvectors of W:

W

(
a0

a1

)
= s

(
a0

a1

)
(47)

and

W

(
b0

b1

)
= s′

(
b0

b1

)
. (48)

Equivalently, these equations can be written

1

s

(
a0

a1

)
= W−1

(
a0

a1

)
(49)

and
1

s′

(
b0

b1

)
= W−1

(
b0

b1

)
. (50)

One then finds coefficients A and B such that(
ψ0(0)

ψ1(0)

)
= A

(
a0

a1

)
+B

(
b0

b1

)
. (51)

Matrices are linear operators, so

W−n
(
ψ0(0)

ψ1(0)

)
= AW−n

(
a0

a1

)
+BW−n

(
b0

b1

)
. (52)

We can now use EQ. (49) and (50) to get

W−n
(
ψ0(0)

ψ1(0)

)
= A× (s)−n

(
a0

a1

)
+B × (s′)−n

(
b0

b1

)
. (53)

Find s, s′, a0, a1, b0, b1.
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Solution 3.2. Finding the eigenvalues s amounts to solving the determinant equation:∣∣∣∣∣1− s − iδt
~

− iδt
~ 1− s

∣∣∣∣∣ = 0 (54)

(1− s)2 +
δt2

~
= 0 (55)

s2 − 2s+ 1 +
δt2

~
= 0 (56)

and so:

s = 1 + i
δt

~
, s′ = 1− iδt

~
, (57)

to first order in δt. Now we wish to solve:(
1 − iδt

~
− iδt

~ 1

)(
a0

a1

)
=

(
1 + i

δt

~

)(
a0

a1

)
. (58)

This has solution: (
a0

a1

)
=

(
1

−1

)
. (59)

Similarly, the Eigenvector equation:(
1 − iδt

~
− iδt

~ 1

)(
b0

b1

)
=

(
1− iδt

~

)(
b0

b1

)
(60)

has solution: (
b0

b1

)
=

(
1

1

)
. (61)

3.3. Find A and B.

Solution 3.3. We are given:(
ψ0(0)

ψ1(0)

)
=

(
1

0

)
=

1

2

(
1

1

)
+

1

2

(
1

−1

)
. (62)

We therefore have A = B = 1/2.

3.4. Find ψ0(Nδt) and ψ1(Nδt).

Solution 3.4. Putting everything together, we arrive at:(
ψ0(Nδt)

ψ1(Nδt)

)
=

(
1
2

(
1− i δt~

)−N
+ 1

2

(
1 + i δt~

)−N
1
2

(
1− i δt~

)−N − 1
2

(
1 + i δt~

)−N
)

(63)

3.5. Comparison We want to understand how good our approximation is. Use a computer to

make a plot which has time on the horizontal axis, and |ψ0|2 on the vertical axis. Plot the exact
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result for 0 < t < 10π. Also plot the result of the Backward Euler Approximation, using timesteps

δt = 0.1 and δt = 0.01. Properly label the axes, and include a legend.

Solution 3.5. Backward Euler

5 10 15 20 25 30
t

0.2

0.4

0.6

0.8

1.0

|ψ0
2

exact

δt=0.1

δt=0.01

3.6. Comparison with Forward Euler Look at your homework from last week (or the solutions).

What is the qualitative difference between the forward and backward Euler approximations? In

Recitation 3, you will see an approximation for which the probabilities neither grow nor shrink.

Solution 3.6. With forward Euler the overall probability gradually increased increased with time,

violating unitarity (conservation of probability). We can see that backward Euler has a steadily

decreasing overall probability, again violating unitarity. The approximation used in recitation: the

Unitary Euler approximation, conserves probability – thus it ends up being much more accurate

at long times.

Problem 4. Heisenberg Equations of Motion

This is not a long problem. I just repeat in the statement of the question a summary of the technique

which you should have seen in P3316. This technique will also be used in lecture 4 – so if this is a

bit mysterious, wait until after lecture 4 to start this problem.

In this problem we will try to study the time dependence of 〈x〉 for a 1D simple harmonic oscillator.

We will introduce a trick which lets us calculate such quantities without calculating the wavefunction

or its time dependence. Recall from our first lecture that for any operator

〈Ô〉(t) =

∫
dxψ∗(x, t)Ôψ(x, t). (64)

-10



If we take the time derivative of this expression we get

∂t〈Ô〉(t) =

∫
dx (∂tψ

∗(x, t))Ôψ(x, t) + ψ∗(x, t)Ô∂tψ(x, t). (65)

But

∂tψ(x, t) =
1

i~
Ĥψ(x, t), (66)

and

∂tψ
∗(x, t) =

i

~
[Ĥψ(x, t)]∗, (67)

Thus

∂t〈Ô〉(t) =
i

~

∫
dx [Ĥψ(x, t)]∗Ôψ(x, t)− ψ∗(x, t)ÔĤψ(x, t). (68)

The Hamiltonian has the property that it is Hermitian, meaning that for any wavefunctions ψ and

φ, ∫
dx [Ĥψ(x, t)]∗φ(x, t) =

∫
dxψ(x, t)∗Ĥφ(x, t). (69)

[To prove this result, you just integrate by parts twice.]

Using the Hermitian property,

∂t〈Ô〉(t) =
1

i~

∫
dxψ∗(x, t)(ÔĤ − ĤÔ)ψ(x, t) (70)

=
1

i~
〈[Ô, Ĥ]〉. (71)

Lets specialize to the simple harmonic oscillator Hamiltonian:

H =
p̂2

2m
+

1

2
mω2

0x̂
2, (72)

and recall that

[x̂, p̂] = i~ (73)

[x̂, p̂2] = 2i~p̂ (74)

[x̂, x̂] = 0 (75)

[x̂, x̂2] = 0 (76)

[p̂, x̂] = −i~ (77)

[p̂, x̂2] = −2i~x̂ (78)

[p̂, p̂] = 0 (79)

[p̂, p̂2] = 0. (80)

4.1. Use Eq. (71) to write ∂t〈x̂〉 in terms of 〈p̂〉.
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Solution 4.1.

∂t 〈x̂〉 =
1

i

〈[
x̂, Ĥ

]〉
=

1

i

〈[
x̂,

p̂2

2m

]
+

[
x̂,

1

2
mω2

0x̂
2

]〉
=

1

2mi

〈[
x̂, p̂2

]〉
=

1

m
p̂

(81)

4.2. Use Eq. (71) to write ∂t〈p̂〉 in terms of 〈x̂〉.

Solution 4.2.

∂t 〈p̂〉 =
1

i

〈[
p̂, Ĥ

]〉
=

1

i

〈[
p̂,
p̂2

2m

]
+

[
p̂,

1

2
mω2

0x̂
2

]〉
=

1

2i
mω2

0

〈[
x̂, p̂2

]〉
= −mω2

0 〈x̂〉

(82)

4.3. Solve these coupled differential equations. For notational simplicity, it is best to write X = 〈x̂〉,
and P = 〈p̂〉.

Solution 4.3. We have the coupled equations:

Ẋ =
1

m
P, (83)

Ṗ = −mω2
0X. (84)

Taking a time derivative of the first equation, and then substituting in the second equation, we

obtain a second order differential equation for X:

Ẍ =
1

m
Ṗ (85)

= −ω2
0X. (86)

This equation has solution:

X = X0 cos(ω0t+ φ), (87)

and for P :

P = −ω0mX0 sin(ω0t+ φ). (88)

Problem 5. Feedback

5.1. How long did this homework take?
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5.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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