
P3317 HW from Lecture 4+5 and Recitation 3

Due Tuesday September 18

Problem 1. Neutral K Mesons

The neutral K mesons are denoted K0 and K̄0. [We say the “kay-zero” and the “kay-zero-bar”

– the generic term for a K-meson is a kaon, pronounce “kay-on”.] The K0 is a bound state of a

down quark and a strange antiquark – ds̄. The K̄0 is a bound state of a strange quark and a down

antiquark – sd̄. These are “anti-particles” in the sense that a K0 and a K̄0 can combine to produce

photons.

The strong interaction produces K0 and K̄0 particles, but they are not energy eigenstates: the

weak interaction can convert a K0 into a K̄0. This is analogous to the tunneling in our “double

well” problem in class. Because of this interconversion, the eigenstates of the (weak) Hamiltonian

are

K0
S =

K0 − K̄0

√
2

(1)

K0
L =

K0 + K̄0

√
2

. (2)

In words we call these the “kay-short” and “kay-long”.

That is, if we think of the symbol K0
S representing a wavefunction, it obeys

HK0
S = ESK

0
S (3)

and similarly

HK0
L = ELK

0
L. (4)

Both EL and ES are approximately 500MeV, while their difference is EL − ES ∼ 4 · 10−12MeV.

1.1. Suppose at time t = 0 our kaon is described by a wavefunction

ψ(t = 0) = αK0
S + βK0

L, (5)

where α and β are just some numbers satisfying |α|2 + |β|2 = 1. By analogy to our usual rules

of quantum mechanics, the probability of being in the K0
S state is |α|2, and the probability of

being in the K0
L is |β|2. What will the wavefunction be at a later time, t? [Hint: How do energy

eigenfunctions evolve with time? By linearity you can consider each term separately. Please do not

substitute numbers in – use the symbols EL and ES for the energies.]
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Solution 1.1. (1 point) We can write Ψ(t) as a superposition of KS and KL as follows:

Ψ(t) = α(t)KS + β(t)KL (6)

Substitute this into the time-dependent Schrodinger equation. Using the orthonormality of KS

and KL, you should get the following differential equations for α(t) and β(t):

i~
dα(t)

dt
= ESα(t)

i~
dβ(t)

dt
= ELβ(t)

(7)

Solving these differential equations and plugging in the initial conditions, we get

α(t) = αe−iESt/~

β(t) = βe−iELt/~
(8)

1.2. By writing K0
S and K0

L in terms of K0 and K̄0, find an expression for the probability of being

in the state K0 in terms of α and β.

Solution 1.2. (1 point) We rewrite the state in the new bases as follows

Ψ(t) = αe−iESt/~KS + βe−iELt/~KL

= αe−iESt/~ (K − K̄)√
2

+ βe−iELt/~ (K + K̄)√
2

=
αe−iESt/~ + βe−iELt/~

√
2

K +
αe−iESt/~ − βe−iELt/~

√
2

K̄

(9)

We see that the probability of being in the K state is

PK =
1

2

∣∣∣αe−iESt/~ + βe−iELt/~
∣∣∣2 (10)

1.3. Find an expression for the probability of being in the state K̄0 in terms of α and β.

Solution 1.3. (1 point) Likewise, the probability of being in the K̄ state is

PK̄ =
1

2

∣∣∣αe−iESt/~ − βe−iELt/~
∣∣∣2 (11)

1.4. Suppose at time t = 0 a strong interaction produces a K0. What will α and β be?

Solution 1.4. (1 point) If we are in the K state, then α = β = 1√
2
.

1.5. At what later time will the particle have a 100% chance of being in the state K̄0?
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Solution 1.5. (1 point) We are in the K̄ state (up to a phase) when the coefficient of the K state

is zero. From (9), we see that this occurs when

αe−iESt/~ + βe−iELt/~
√

2
= 0 (12)

Since we saw in Part 1.4 that α = β, this equation is satisfied when

e−iELt/~ = −e−iESt/~

e−i(EL−ES)t/~ = −1
(13)

This equation is satisfied if −i(EL − ES)t/~ = (2N + 1)π, or t = ~
EL−Es

(2N + 1)π, where N is a

nonnegative integer. The question just asked for a single time – so any of these is fine. The most

important, however, is the first such time, t = ~
EL−Es

π.

1.6. If the kaons are moving at roughly the speed of light, how far will they go before changing

into their antiparticles? Give your distance in meters [neglect any relativistic time dilation].

Solution 1.6. (1 point) The first change occurs at a distance of

d =
~

EL − Es
πc = 0.16 m.

Of course, relativistic effects are important, and this is actually one of the classic demonstrations

of time dilation

[ As an aside, the names “long” and “short” come from the fact that the K0
L has a lifetime of about

5 ·10−8s, while the K0
S has a lifetime of 10−11s. As a second aside – in relativity one equates energy

and mass. Thus we say that the K0
L and K0

S are the mass eigenstates. The K0 and K̄0 are referred

to as the flavor eigenstates. ]

Problem 2. The rotating frame

In class we modeled the interaction of an ammonia atom with microwaves via the differential

equation

i∂t

(
a

b

)
=

(
−∆ ε cos(νt)

ε cos(νt) ∆

)(
a

b

)
, (14)

where a is the amplitude of being in the symmetric state, b the amplitude for the antisymmetric

state, and ε is proportional to the electic field strength.

In class we studied this equation when a ∼ 0. We found that there were separate contributions

from the two exponentials making up the cosine. One of these contributions was small. As you will

find out in this problem, one can exactly solve the dynamics (for any size b) if one throws away the
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small contribution. In particular, we will solve the approximate problem:

i∂t

(
a

b

)
=

(
−∆ εeiνt/2

εe−iνt/2 ∆

)(
a

b

)
. (15)

This is known as the “rotating wave approximation.” It is good as long as ν + 2∆ � ε, which is

essentially always true for the physical system.

2.1. We can get rid of the time dependence in Eq. (15) by making the Ansatz:

b̃(t) = eiνtb(t). (16)

This transformation is often referred to as “going into the rotating frame.”

Substitute this Ansatz into Eq. (15) to get an equation of the form

i∂t

(
a

b̃

)
=

(
A B

B C

)(
a

b̃

)
. (17)

where A,B,C are all time independent. What are A,B, and C?

Solution 2.1. (2 points) We are given the equation

i∂t

(
a

b

)
=

(
−∆ εeiνt/2

εe−iνt/2 ∆

)(
a

b

)
(18)

We then make the ansatz b̃(t) = eiνtb(t). We note that

∂tb(t) = ∂t(b̃(t)e
−iνt) = (∂tb̃(t))e

−iνt − iνb̃(t)e−iνt (19)

We can then rewrite the given equation as in which case (19) becomes

i∂ta = −∆a+
ε

2
b̃ (20)

i(∂tb̃)e
−iνt + νb̃e−iνt =

ε

2
e−iνta+ ∆b̃e−iνt (21)

We can rewrite this as

i∂t

(
a

b̃

)
=

(
−∆ ε

2
ε
2 ∆− ν

)(
a

b̃

)
(22)

2.2. Find the eigenvalues λ1, λ2 and eigenvectors (a1, b1), (a2, b2), of the matrix. What are λ1, λ2, a1, b1, a2, b2

in terms of ∆, ε, ν. Note that the vectors are only defined up to a multiplicative constant. You do

not need to normalize the vectors (but your subsequent expressions should be consistent with your

choice).
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Solution 2.2. (4 points - 1 for each eigenvalue, and 1 for each eigenvector) We want to solve

0 =

∣∣∣∣∣ −∆− x ε
2

ε
2 ∆− ν − x

∣∣∣∣∣ = x2 + νx−∆2 + ν∆− ε2

4
(23)

for x to get the eigenvalues. The solutions are

λ1 = −ν
2

+

√(ν
2
−∆

)2
+
ε2

4
(24)

λ2 = −ν
2
−
√(ν

2
−∆

)2
+
ε2

4
. (25)

The eigenvectors are

v1 =

(
a1

b1

)
=

(
1

2(∆+λ1)
ε

)
for λ1, v2 =

(
a2

b2

)
=

(
ε

2(∆+λ2)

1

)
for λ2 (26)

Note that these eigenvectors are unnormalised, but it doesn’t really matter if you do things

consistently throughout.

2.3. Write the initial state, a = 0, b = 1 as the sum of these two eigenvectors. Write your answer in

terms of a1, b1, a2, b2. Do not substitute in your expressions for these quantities in terms of ∆, ε, ν.

Solution 2.3. (2 points) We are given initial conditions a(0) = 0, b(0) = b̃(0) = 1.(
a(0)

b̃(0)

)
=

(
0

1

)

=
a2

a2b1 − a1b2

(
a1

b1

)
+

a1

a1b2 − a2b1

(
a2

b2

)

=
ε

2(λ1 − λ2)
v1 −

∆ + λ2

λ1 − λ2
v2

(27)

2.4. What is a(t) and b̃(t)? Write your answer in terms of a1, b1, a2, b2, λ1, λ2. Do not substitute

in your expressions for these quantities in terms of ∆, ε, ν.
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Solution 2.4. (2 points) We can rewrite our state in the eigenvector basis:(
a(t)

b̃(t)

)
= c1(t)v1 + c2(t)v2 (28)

(22) then becomes

i∂tc1(t)v1 + i∂tc2(t)v2 = λ1c1(t)v1 + λ2c2(t)v2 (29)

We hence obtain differential equations for c1 and c2, with general solutions

c1(t) = c1(0)e−iλ1t, c1(t) = c2(0)e−iλ2t (30)

Given the initial conditions c1(0) and c2(0) we found in (27), we have:(
a(t)

b̃(t)

)
=

a2

a2b1 − a1b2
e−iλ1tv1 +

a1

a1b2 − a2b1
e−iλ2tv2

=
ε

2(λ1 − λ2)
e−iλ1tv1 −

∆ + λ2

λ1 − λ2
e−iλ2tv2

(31)

2.5. If we are on resonance, ν = 2∆, everything simplifies. Write a(t) and b̃(t) for this case [in

terms of ∆ and ε].

Solution 2.5. (2 points) If we are on resonance,

λ1 = −∆ +
ε

2
(32)

λ2 = −∆− ε

2
(33)

Then (31) becomes (
a(t)

b̃(t)

)
=

1

2
e−iλ1t

(
1

1

)
+

1

2
e−iλ2t

(
−1

1

)
(34)

So we have

a(t) = −ei∆ti sin(
ε

2
t) (35)

b̃(t) = ei∆t cos(
ε

2
t) (36)

2.6. If we are on resonance, ν = 2∆, there will be a time when the molecule has a 100% chance

of being in the symmetric state. What is the earliest such time? This is the ideal amount of time

that the molecule should be in the cavity.

Solution 2.6. (2 points) We are in the symmetric state when b̃(t) = 0. This occurs when

cos( ε2 t) = 0, or t = π
ε at the first instance.

2.7. In recitation 3 you numerically solved Eq. (14) – though you did it in a different basis. Rewrite

your code to solve Eq. (14) in the basis given.
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Compare your numerical solution to your analytic “Rotating Wave” approximation. In particular,

take the resonant case ν = 2∆, with ∆ = 1 and ε = 0.1. Make a properly labeled plot which

shows the probability of being in the symmetric state as a function of time – including both the

approximate and numerically exact solution. Choose your step size for the numerics sufficiently

small that there is no noticable error from the finite step size. Choose the scale of your graph

so that it includes a bit more than one ”Rabi flop” (that is, choose the time interval so that the

probability of being in the symmetric state becomes maximal, and starts dropping again). Include

a legend.

Upload your notebook to Blackboard – but also include a print-out of your graph with the homework

sheets that you hand in.

Solution 2.7. (1 point for uploading notebook – grader will not go through notebook though)

One way to produce the plots is to use:

%pylab inline

def homeworkH(t,delta=1,eps=0.1,nu=2):

mat=array([[-delta,eps*cos(nu*t)],[eps*cos(nu*t),delta]])

return mat

def homeworkU(t,dt=0.1,eps=0.1,delta=1,nu=2):

mat1=eye(2) -1.j*(dt/2)*homeworkH(t=t,delta=delta,eps=eps,nu=nu)

mat2=eye(2) +1.j*(dt/2)*homeworkH(t=t,delta=delta,eps=eps,nu=nu)

U=inv(mat2).dot(mat1)

return U
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Solution 2.7. continued...

def hwtimeseries(maxt,dt,eps=0.1):

t=0

psi=array([0.,1.])

psilist=[psi]

tlist=[t]

while (t<maxt):

t=t+dt

evolve=homeworkU(t,dt,eps)

psi=evolve.dot(psi)

tlist.append(t)

psilist.append(psi)

psiarray=array(psilist)

tarray=array(tlist)

return {"psi":psiarray,"t":tarray,"eps":eps,"dt":dt,"maxt":maxt}

ser1=hwtimeseries(maxt=1.5*pi/0.1,dt=0.1,eps=0.1)

psilist=ser1["psi"]

plist=[abs(psi[0])**2 for psi in psilist]

tlist=ser1["t"]

analytic=sin(0.1*tlist/2)**2

plot(tlist,plist,linestyle="-",linewidth=3,color="k", label="Numerical")

plot(tlist,analytic,"r",linewidth=1.5,label="Rotating Wave Approximation")

ylim(0,1.1)

xlabel("t")

ylabel("$|\psi_s|^2$")

title("Probability of stimulated emission")

legend(loc="lower right")

savefig("se.pdf")
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Solution 2.7. continued...

This gives something like:

(5 points for graph – 1 for labels, 1 for choosing scale, 2 for numerical result, 1 for analytic result)

0 10 20 30 40 50

t

0.0

0.2

0.4

0.6

0.8

1.0

|ψ
s
|2

Probability of stimulated emission

Numerical

Rotating Wave Approximation

2.8. Describe in words the difference between the results you found with the analytic approximation

and the numerics. What features are captured well by the approximation, and which are missed?

Solution 2.8. (2 points) The general shape, and even the time-scale is well modeled by the

rotating wave approximation. What is missed is high frequency ”wiggles.” This makes sense, as

we neglected some highly oscillatory terms.

Problem 3. Write a matrix that corresponds to a finite difference approximation to the Harmonic

Oscillator Hamiltonian. Explain your notation.
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Solution 3.1. (4 points – 2 for getting derivative matrix right, 2 points for the potential matrix)

The Hamiltonian is

H = − ~2

2m

d2

dx2
+

1

2
mω2x2 (37)

A finite difference version of the second derivative (central second derivative) reads

f ′′n =
fn+1 − 2fn + fn−1

∆x2
(38)

Let us use the indexing set {0, 1, ...nmax} for our grid. As discussed in the recitations, we can

refine the corresponding matrix in a few ways. One way is to use periodic boundary conditions,

i.e. we impose f(x−1) = f(xnmax) and f(xnmax+1) = f(x0). We can then write the Hamiltonian

as

H = − ~2

2m∆x2



−2 1 0 · · · 0 1

1 −2 1 · · · 0 0

0 1 −2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . .

. . .
. . . 1

1 0 · · · 0 1 −2


+

1

2
mω2


x2

0 0 · · · 0

0 x2
1 · · · 0

...
...

. . .
...

0 0 · · · x2
nmax

 (39)

where xn = x0 + n∆x. We note that the 1’s in the top-right and bottom-left corners of the

first term are due to the choice of periodic boundaries. You are welcome to use other boundary

conditions, in which case those 1’s will not be there.

Another acceptable version of the kinetic energy matrix is

K = − ~2

8m∆x2



−2 0 1 · · · 0 0

0 −2 0 1 · · · 0

1 0 −2 0 1 ·
...

. . .
. . .

. . .
. . . 1

0 0
. . .

. . .
. . . 0

0 0 · · · 1 0 −2


. (40)

There are some subtle numerical issues with this choice, but it will generally work. Note the

factor in the denominator, and this time I used hard wall boundary conditions.

Problem 4. Feedback

4.1. How long did this homework take?

4.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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