
P3317 HW from Lecture 8+9 and Recitation 5

Due Tuesday October 2

Problem 1. Two spin 1/2 particles

The space of states describing two spin 1/2 particles is spanned by four states, which are conve-

niently written,

| ↑↑〉 = | ↑〉 ⊗ | ↑〉 (1)

| ↑↓〉 = | ↑〉 ⊗ | ↓〉 (2)

| ↓↑〉 = | ↓〉 ⊗ | ↑〉 (3)

| ↓↓〉 = | ↓〉 ⊗ | ↓〉. (4)

In each of these states, the spin projection of each of the spins has a definite value in the ẑ direction.

An important set of operators on this space are those which are a product of something happening

to each spin. For example σz ⊗σx is the operator which simultaneously acts as a Pauli σz operator

on the first spin, and a Pauli σx on the second. Sometimes this is instead written σz1σx2. For

example,

σz ⊗ σx| ↓↓〉 = −| ↓↑〉. (5)

The ”−” sign comes from the σz on the first spin. The σx then flips the second spin.

1.1. Consider the action of σz ⊗ σx on the basis vectors,

σz ⊗ σx


| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

 =


? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?



| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

 . (6)

Call the matrix on the right M̄ . Find M̄ .
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Solution 1.1. (2 points)

The matrix elements are

σz ⊗ σx| ↑↑〉 = | ↑↓〉 (7)

σz ⊗ σx| ↑↓〉 = | ↑↑〉 (8)

σz ⊗ σx| ↓↑〉 = −| ↓↓〉 (9)

σz ⊗ σx| ↓↓〉 = −| ↓↑〉 (10)

(11)

and hence

M̄ =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 (12)

1.2. Consider an arbitrary state

|ψ〉 = ψ↑↑| ↑↑〉+ ψ↑↓| ↑↓〉+ ψ↓↑| ↓↑〉+ ψ↓↓| ↓↓〉, (13)

where the coefficients ψστ are complex numbers. Imagine creating a new state

|ψ′〉 = σz ⊗ σx|ψ〉 (14)

= ψ′↑↑| ↑↑〉+ ψ′↑↓| ↑↓〉+ ψ′↓↑| ↓↑〉+ ψ′↓↓| ↓↓〉. (15)

The coefficients of the new state are related to the old via
ψ′↑↑
ψ′↑↓
ψ′↓↑
ψ′↓↓

 =


? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?




ψ↑↑

ψ↑↓

ψ↓↑

ψ↓↓

 . (16)

Call this matrix M . Find M .
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Solution 1.2. (2 points) Applying the operator to the state yields

σz ⊗ σx|ψ〉 = ψ↑↑σz ⊗ σx| ↑↑〉+ ψ↑↓σz ⊗ σx| ↑↓〉+ ψ↓↑σz ⊗ σx| ↓↑〉+ ψ↓↓σz ⊗ σx| ↓↓〉 (17)

= ψ↑↑| ↑↓〉+ ψ↑↓| ↑↑〉 − ψ↓↑| ↓↓〉 − ψ↓↓| ↓↑〉. (18)

Equating terms yields

ψ′↑↑ = ψ↑↓ (19)

ψ′↑↓ = ψ↑↑ (20)

ψ′↓↑ = −ψ↓↓ (21)

ψ′↓↓ = −ψ↓↑ (22)

and hence

M =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 (23)

1.3. How is M̄ related to M?

Solution 1.3. (1 point)

In this case M̄ = M .

As an aside, in general M̄ = M t.

To see the general case, consider a general operator X̂, and a general basis |j〉, where j indexes

the states. The action of X̂ on the basis states can be expressed as

X̂|i〉 =
∑
j

(X̄)ij |j〉, (24)

which defines the matrix X̄. Consider a general state |ψ〉 =
∑

j ψj |j〉. Acting on it with X̂ yields

X̂|ψ〉 =
∑
jk

ψj(X̄)jk|k〉 (25)

=
∑
k

ψ′k|k〉. (26)

1.4. A very important operator for two spin-1/2 objects is

Λ̂ = σx ⊗ σx + σy ⊗ σy + σz ⊗ σz. (27)

One reason it is important is that it is ”rotationally invariant”. That is, it under rotation of space

it maps onto itself. You will spend quite some time on the rotational properties of operators in

PHYS 4443.
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Generate the 4× 4 matrix defined by

Λ̂


| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

 =


? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?



| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

 . (28)

Call the matrix Λ̄. [Hint: It is easiest to separately do the three terms in Eq. (27), then add them

up.]

Solution 1.4. (3 points)

Lets denote the three matrices as Λx, Λy, and Λz.

Λ̄x =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 (29)

Λ̄y =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 (30)

Λ̄z =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (31)

and hence

Λ̄ =


1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

 (32)

1.5. Find the eigenvalues of Λ̄ (including multiplicities).

Solution 1.5. (1 point)

The eigenvalues are: 1,1,1,-3.

One context one sees this matrix in is when you look at the square of the total spin operator:

|~S|2 = |~S1 + ~S2|2 = |~S1|2 + |~S2|2 + 2~S1 · ~S2 (33)

The first two terms are each proportional to the identity (they each yield 3~2/4. The last term

is the matrix (~2/2)Λ̂. Thus the eigenvalues of |~S|2 are 2~2, 2~2, 2~2, 0 – representing three states

that transform as a spin-1 object, and one that transforms as a spin-0.
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Problem 2. Symmetric Bell’s Inequalities

In class we showed that quantum mechanics was incompatible with a local hidden variables theory.

In particular, we imagined a setting where two spins were created in a completely correlated state.

Each spin hits a detector. The detectors determine the polarization along one of three randomly

chosen directions – each 120◦ from one another.

We showed that quantum mechanically, whenever the two detectors point in the same direction,

the two spins will be detected to be aligned. [This is obvious – it is what we mean by completely

correlated.] We argued that when the two detectors were pointing in different directions the spins

will be “aligned” 25% of the time. By this I mean if one spin is “up” in the ẑ direction, then the

other will be up in the 120◦ basis 25% of the time. We will call this probability 25% the “coincidence

probability”.

Finally we argued that this was inconsistent with a hidden variable theory.

In a hidden variable theory, each spin has an identical codebook, which tells it if it should be up or

down in the three directions. Here you will calculate from symmetry the probabilities of different

“codebooks.” In particular, let P (σ1, σ2, σ3) be the probability that the codebook has the spin being

σ1 in the ẑ direction, σ2 in the 120◦ direction, and σ3 in the −120◦ direction. [Note, the codebook

is not probabilistic. This is the probability for a given codebook to be assigned to the spin.]

By symmetry

P (↑, ↑, ↑) = P (↓, ↓, ↓) = p (34)

P (↑, ↑, ↓) = P (↑, ↓, ↑) = P (↓, ↑, ↑) = P (↓, ↓, ↑) = P (↓, ↑, ↓) = P (↑, ↓, ↓) = c. (35)

2.1. Given that the sum of all probabilities is unity, write a relationship between p and c.

Solution 2.1. (1 point)

All the possibilites and their probabilities have been listed, so their probabilities should add to 1.

2p+ 6c = 1 (36)

2.2. Given that both p and c must be non-negative, what is the largest c can be?

Solution 2.2. (1 point)

Since p ≥ 0, we have

c =
1− 2p

6
≤ 1

6
(37)

2.3. What is the smallest that the coincident probability can be:

Pcoinc = P (↑, ↑, ↑) + P (↑, ↑, ↓) + P (↓, ↓, ↑) + P (↓, ↓, ↓) (38)
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This is one form of “Bell’s Inequality” – and it is clearly violated by the quantum prediction (and

the experiment).

Solution 2.3. (1 point)

Let us choose the first detector to be in the ẑ direction and the second detector in the 120◦

direction. The coincidence probability is then given by

Pcoinc = P (↑, ↑, ↑) + P (↑, ↑, ↓) + P (↓, ↓, ↑) + P (↓, ↓, ↓)
= 2p+ 2c

= 1− 4c

≥ 1

3

(39)

We see that the minimum coincidence probability is 33%, whereas quantum mechanics allows for

a coincidence probability of 25% for a completely correlated state.

Problem 3. Entanglement A state of two spins is called a product state if it can be written as

|ψ〉 = (a| ↑〉+ b| ↓〉)⊗ (c| ↑〉+ d| ↓〉). (40)

For a product state, a measurement of one spin tells you nothing about the state of the other.

For contrast, a state is called entangled if it cannot be written as a product state. An example is

the Bell state

|ψ〉 =
| ↑↑〉+ | ↓↓〉√

2
. (41)

3.1. Prove that the Bell state is entangled. Hint: try to find what a, b, c, d are, and see if you get

a contradiction.

Solution 3.1. (2 points)

The product state given in the question can be written as

|ψ〉 = ac| ↑↑〉+ bc| ↓↑〉+ ad| ↑↓〉+ bd| ↓↓〉 (42)

A Bell state requires ac = bd = 1√
2

and ad = bc = 0. It is clear that no solutions for a, b, c and d ex-

ist. For example, we find that ac×bd = abcd = 1
2 but bc×ad = abcd = 0, which is a contradiction.

3.2. Find one other entangled state, and prove that it is entangled.
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Solution 3.2. (2 points)

Another example of an entangled state is

|ψ〉 =
1√
2

(| ↓↑〉+ | ↑↓〉) (43)

This state requires ad = bc = 1√
2

and ac = bd = 0, which again leads to a contradiction.

Other common choices are | ↑↑〉 − | ↓↓〉, or | ↑↓〉 − | ↓↑〉.

Problem 4. Shor’s Algorithm

Here I will walk you through applying Shor’s algorithm for factoring the number 187. This is a

small enough number that you can run the algorithm by hand – with minimal help from a classical

computer.

4.1. The first step is to pick a random a. Lets choose a = 7. We then define f(x) = mod (ax, 187).

Find the period of f . [I recommend using a computer. The Python command for mod is %. Rather

than just making a loop of powers of 7, then applying the mod operator to them, I would generate

subsequent terms from the last via: f(x+1) = mod( a f(x),187). By this I mean you have a loop

where you at each time through the loop you take f → mod (af, 187), and x→ x+ 1. You stop

the loop as soon as f = 1. The x which corresponds to that f is the period.

A good way to check that your loop is working is to try it with a simpler case, such as f(x) =

mod (3x, 7), which you can do by hand: f(0) = 1, f(1) = 3, f(2) = 2, f(3) = 6, f(4) = 4, f(5) =

5, f(6) = 1, f(7) = 3, . . . This sequence has period 6 (which your program should be able to find).

If the loop stymies you, the other approach is to just generate a few hundred values of f , and look

for the first repeat.

Solution 4.1. (2 points)

However you do it, you should find that the period is 80.

The role of quantum mechanics in Shor’s algorithm is finding this period. The whole idea is that

one can use quantum interference to find peaks in the discrete Fourier transform of this sequence,

which lets you deduce the period.

4.2. If r is the period, and r is even, then Number Theory tells us that f(r/2)±1 will have common

factors with 187. Use this result to find the factors of 187. Here is a quick function which finds the

greatest common divisor of two numbers:

def gcd(a,b):

while b:

a,b=b,a%b

return a
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This algorithm was known to the Greeks, and is called “Euclid’s Algorithm.”

Solution 4.2. (2 points)

You should find that for r = 80, f(r/2)− 1 = 66 and f(r/2) + 1 = 68. 66 and 187 have common

factors 11, while 68 and 187 have common factors 17. Since 187 = 11×17, we have indeed factored

187.

Problem 5.

5.1. What are the values of s such that

eis = 1? (44)

Hint: There are infinitely many of them.

Solution 5.1. (1 point) s = 2nπ for all n ∈ Z.

5.2. For given θ, what are the values of s such that

eis = eiθ. (45)

Hint: Question 5.1 is the special case θ = 0, so there should be infinitely many solutions.

Solution 5.2. (1 point) s = 2nπ + θ for all n ∈ Z.

5.3. For fixed real A and φ, what are the values of s and t such that

eis+t = Aeiφ? (46)

Solution 5.3. Assuming that A is positive: s = 2nπ + φ for all n ∈ Z, and t = ln(A).

One often summarizes these results by defining the natural log to be a multi-valued function,

ln(z) = ln(|z|) + i arg(z) + 2πin. (47)

Your calculator typically gives this quantity with n = 0, called the “principal branch.” Similar,

arcsin and arccos, defined as the inverse of sin and cos are most naturally thought of as multivalued

functions, and your calculator only gives the principal branch.
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Problem 6. Consider the function F = z∗z + (2 + i)z + (2 − i)z∗ + 3, where z = x + iy and

z∗ = x− iy.

6.1. Write F in terms of x and y.

Solution 6.1. (1 point)

F = x2 + y2 + 4x− 2y + 3. (48)

6.2. Minimize this function by evaluating(
∂F

∂x

)
y

= 0 (49)(
∂F

∂y

)
x

= 0 (50)

where in the first line one takes the derivative with respect to x for fixed y, and in the second line

one takes the derivative with respect to y for fixed x.

Solution 6.2. (2 points) Taking the derivatives, we find

2x+ 4 = 0 (51)

2y − 2 = 0, (52)

and hence x = −2, y = 1.

6.3. Suppose we formally treat z and z∗ as independent variables. One can then look at the

equation (
∂F

∂z∗

)
z

= 0. (53)

You should find that this is an equation for z. Solve it. How is this z related to the result of

Problem 6.2?

Solution 6.3. (1 points) Taking the derivative, we find

z + (2− i) = 0 (54)

which gives hence x = −2, y = 1, as before.

Problem 7. Feedback

7.1. How long did this homework take?

7.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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