
P3317 HW from Lecture 12+13 and Recitation 7

Due Oct 16, 2018

Problem 1. Separation of variables Suppose we have two masses that can move in 1D. They

are attached by a spring, yielding a Hamiltonian

H = − ~2

2m
∂21 −

~2

2m
∂22 +

1

2
k(x1 − x2)2, (1)

where the derivative symbols mean

∂1ψ =

(
∂ψ

∂x1

)
x2

(2)

∂2ψ =

(
∂ψ

∂x2

)
x1

. (3)

We will attempt to write the two-particle wavefunction ψ(x1, x2) in terms of

X =
x1 + x2

2
(4)

x = (x1 − x2). (5)

1.1. Using your knowledge of multivariable calculus, write

∂x1ψ =

(
∂ψ

∂x1

)
x2

(6)

in terms of

∂Xψ =

(
∂ψ

∂X

)
x

(7)

and

∂xψ =

(
∂ψ

∂x

)
X

. (8)

Equations (7) and (8) define the operators ∂X and ∂x.

Solution 1.1 (2 points). Using chain rule(
∂ψ

∂x1

)
x2

=

(
∂ψ

∂X

)
x

(
∂X

∂x1

)
x2

+

(
∂ψ

∂x

)
X

(
∂x

∂x1

)
x2

(9)

=
1

2

(
∂ψ

∂X

)
x

+

(
∂ψ

∂x

)
X

(10)

Thus we can write

∂x1 =
1

2
∂X + ∂x (11)
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1.2. Do the same with

∂2ψ =

(
∂ψ

∂x2

)
x1

(12)

Solution 1.2 (2 points). Using chain rule(
∂ψ

∂x2

)
x1

=

(
∂ψ

∂X

)
x

(
∂X

∂x2

)
x1

+

(
∂ψ

∂x

)
X

(
∂x

∂x2

)
x1

(13)

=

(
∂ψ

∂X

)
x

1

2
−
(
∂ψ

∂x

)
X

(14)

Thus we can write

∂x2 =
1

2
∂X − ∂x (15)

1.3. Write

T̂ = − ~2

2m
∂21 −

~2

2m
∂22 (16)

in terms of derivatives with respect to X and x.

Solution 1.3 (2 points).

∂21 + ∂22 =

(
1

2
∂X + ∂x

)2

+

(
1

2
∂X − ∂x

)2

(17)

=
1

2
∂2X + 2∂2x (18)

Thus

T̂ = − ~2

4m
∂2X −

~2

m
∂2x (19)

1.4. Show that the time independent Schrodinger equation

Ĥψ = Eψ, (20)

can be satisfied by a wavefunction of the form

ψ = f(X)g(x), (21)

where f only depends on the center-of-mass coordinate X, and g only depends on the relative

co-ordinate x. Find the equations which must be satisfied by f and g.
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Solution 1.4 (3 points). We begin by assuming that the solution has that form, and hence

Ef(X)g(x) = g(x)

[
− ~2

4m
f ′′(X)

]
+ f(x)

[
−~2

m
g′′(x) +

1

2
mω2x2g(x)

]
. (22)

Dividing this expression by f(X)g(x) yields

E =
1

f(X)

[
− ~2

4m
f ′′(X)

]
+

1

g(x)

[
−~2

m
g′′(x) +

1

2
mω2x2g(x)

]
. (23)

This can only be satisfied if there are two numbers E1 and E2 such that

E1f(X) = − ~2

4m
f ′′(X) (24)

E2g(x) = −~2

m
g′′(x) +

1

2
mω2x2g(x). (25)

We then have E = E1 + E2.

Problem 2. Ladder operators This is a review of material covered in PHYS 3316.

Using our standard tricks, we adimensionalize the Hamiltonian for the simple harmonic oscillator,

writing

Ĥ =
1

2
p̂2 +

1

2
x̂2, (26)

where the dimensionless position and momentum operators obey

[x̂, p̂] = i. (27)

[To get back to dimensional quantities, you would multiply energies by ~ω, lengths by
√

~/mω and

momenta by
√
~mω. For this question, however, use the dimensionless quantities.]

2.1. Consider the operators â = (x̂+ ip̂)/
√

2 and â† = (x̂− ip̂)/
√

2. Find the commutator [â, â†].

Solution 2.1 (2 points).

[â, â†] =
1

2
[x̂+ ip̂, x̂− ip̂] (28)

=
1

2
([x̂, x̂] + i[p̂, x̂]− i[x̂, p̂] + [p̂, p̂]) (29)

= 1 (30)

2.2. Show that the Hamiltonian can be written as

Ĥ = α â†â+ β. (31)

Find the numbers α and β.
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Solution 2.2 (2 points). We first note

â†â =
1

2
(x̂− ip̂)(x̂+ ip̂) (32)

=
1

2

(
x̂2 + i(x̂p̂− p̂x̂) + p̂2

)
(33)

=
1

2

(
x̂2 + p̂2

)
− 1

2
, (34)

which then gives

Ĥ = â†â+
1

2
, (35)

and hence α = 1, β = 1/2.

2.3. Calculate [â, Ĥ] and [â†, Ĥ]. Hint: use [A,BC] = B[A,C] + [A,B]C.

Solution 2.3 (2 points).

[â, Ĥ] = [â, â†â] (36)

= [â, â†]â (37)

= â. (38)

Similarly

[â†, Ĥ] = [â†, â†â] (39)

= â†[â†, â] (40)

= −â†. (41)

2.4. Suppose |ψ〉 is an eigenstate of Ĥ with dimensionless energy E. Show that |ψ′〉 = â|ψ〉 is

also an eigenstate. How is its energy, E′ related to E? [Hint: Use the commutation relationship

between â and Ĥ.]

Solution 2.4 (2 points).

Ĥ|ψ′〉 = Ĥâ|ψ〉 (42)

=
(
Ĥâ− âĤ + âĤ

)
|ψ〉 (43)

=
(
−â+ âĤ

)
|ψ〉 (44)

= (E − 1)|ψ′〉. (45)

Thus |ψ′〉 is an energy eigenstate with eigenvalue E − 1.

2.5. Suppose |ψ〉 is an eigenstate of Ĥ with dimensionless energy E. Show that |ψ′〉 = â†|ψ〉 is

also an eigenstate. How is its energy, E′ related to E? [Hint: Use the commutation relationship

between â† and Ĥ.]
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Solution 2.5 (2 points).

Ĥ|ψ′〉 = Ĥâ†|ψ〉 (46)

=
(
Ĥâ† − â†Ĥ + â†Ĥ

)
|ψ〉 (47)

=
(
â† + â†Ĥ

)
|ψ〉 (48)

= (E + 1)|ψ′〉. (49)

Thus |ψ′〉 is an energy eigenstate with eigenvalue E + 1.

2.6. In PHYS 3316 you should have further argued that there is a ground state |0〉 defined by

â|0〉 = 0. Find its energy, E0.

2.7 (2 points).

Ĥ|0〉 =

(
â†â+

1

2

)
|0〉 (50)

=
1

2
|0〉. (51)

Thus E0 = 1/2.

In PHYS 3316 you also should have calculated the normalization of the states. I will not have you

work through it here, but the result that you found was that

â†|n〉 =
√
n+ 1|n+ 1〉 (52)

â|n〉 =
√
n|n− 1〉 (53)

Problem 3. Degeneracies of the 2D Harmonic Oscillator

3.1. The eigenstates of the 2D harmonic oscillator can be labeled by 2 quantum numbers, nx, ny =

0, 1, · · · corresponding to the number of quanta of excitation in each direction. What is the energy

of the state with quantum numbers nx, ny? Take the spring constant to be equal in both direction,

and take the classical oscillation frequency to be ω.

Solution 3.1 (1 point).

E = ~ω (1/2 + nx) + ~ω (1/2 + ny) = ~ω (1 + nx + ny) , (54)

3.2. Make a table that has three columns. In the first column put the energy E. In the second

column list all of the nx, ny combinations which make that energy. In the third column put the

total degeneracy of the energy level. Fill in the first four energies.
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Solution 3.2 (3 points).

E/(~ω) (nx, ny) Degeneracy

1 (0, 0) 1

2 (1, 0), (0, 1) 2

3 (2, 0), (1, 1), (0, 2) 3

4 (3, 0), (2, 1), (1, 2), (0, 3) 4

(55)

3.3. What is the degeneracy of the n’th level? Note: this degeneracy is in many ways analogous to

the large degeneracy in the Hydrogen spectrum. In both cases all classical trajectories are closed.

Here we have the additional features that all classical orbits have the same period. As emphasized

in class, degeneracies are almost always related to symmetries.

Solution 3.3 (2 points). Starting counting at n = 1 (so E = n~ω) the degeneracy will be n. If

you start counting at n = 0, the degeneracy will be n+ 1. Either answer is fine.

Julien Schwinger, one of the great physicists of the 20th century, came up with an ingenious way to

map the symmetry in this problem onto something which looks like angular momentum. I should

emphasize however that it is not angular momentum. He started with the ladder operators for the

x and y oscillators:

ax|nx, ny〉 =
√
nx|nx − 1, ny〉 (56)

ay|nx, ny〉 =
√
ny|nx, ny − 1〉. (57)

He then created the following combinations:

Lx =
a†xay + a†yax

2
(58)

Ly =
a†xay − a†yax

2i
(59)

Lz =
a†xax − a†yay

2
. (60)

The first two are traditionally combined to make

L+ = a†xay (61)

L− = a†yax. (62)

3.4. I would like you to prove that L obeys the same commutation relations as angular momentum:

[L±,Lz] = ∓L± (63)

[L+,L−] = 2Lz (64)
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Tricks:

Use the identity

[AB,CD] = AC[B,D] +A[B,C]D + C[A,D]B + [A,C]BD,

and the relations

[ax, ay] = [ax, a
†
y] = [a†x, ay] = [a†x, a

†
y] = 0

[ax, a
†
x] = [ay, a

†
y] = 1

[ax, ax] = [a†x, a
†
x] = [ay, ay] = [a†y, a

†
y] = 0

Using these tricks, the identities should not take more than a few lines to prove. If you get stuck,

skip it. I will give you full marks if you write ”I spent 30 minutes on this part of the problem, and

could not complete it.” [Don’t forget to complete the other questions though – particularly the one

at the end where you look at the anisotropic oscillator.]

Solution 3.4 (3 points). Starting with:

[L+,Lz] =
1

2

(
[a†xay, a

†
xax]− [a†xay, a

†
yay]

)
, (65)

we use the identities and pick out only those terms that are non-zero:

[L+,Lz] =
1

2

(
a†x[a†x, ax]ay − a†x[ay, a

†
y]ay

)
, (66)

= −a†xay = −L+. (67)

Similarly:

[L+,Lz] =
1

2

(
[a†yax, a

†
xax]− [a†yax, a

†
yay]

)
, (68)

=
1

2

(
a†y[ax, a

†
x]ax − a†y[a†y, ay]ax

)
, (69)

= −a†xay = +L−. (70)

Finally,

[L+,L−] = [a†xay, a
†
yax] (71)

=
1

2

(
a†y[a†x, ax]ay + a†x[ay, a

†
y]ax

)
, (72)

= −a†yay + a†xax = 2Lz. (73)

Of course, you will get full marks if you write ”I spent 30 minutes on this part of the problem,

and could not complete it.”

3.5. Prove that L± and Lz commute with the Hamiltonian – and hence are generators of a sym-
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metry.

Again, using the tricks in 3.4, this should only take a couple lines. Again, don’t spend more than

another 30 minutes on this one. You will get full marks if you write ”I spent 30 minutes on this part

of the problem, and could not complete it.” [Don’t forget to complete the other questions though

– particularly the one at the end where you look at the anisotropic oscillator.]

Solution 3.5 (3 points). The Hamiltonian is given by:

H = ~ω(1 + a†xax + a†yay). (74)

Therefore:

[L+, H] = ~ω
(

[a†xay, a
†
xax] + [a†xay, a

†
yay]

)
(75)

= ~ω
(
a†x[a†x, ax]ay + a†x[ay, a

†
y]ay

)
(76)

= 0 (77)

and similarly for L−. For Lz:

[Lz, H] =
~ω
2

(
[a†xax, a

†
xax] + [a†yay, a

†
yay]

)
(78)

=
~ω
2

([nx, nx] + [ny, ny]) (79)

= 0, (80)

where, taking a break from repeated use of commutation identities, we have simply used our

physical intuition/knowledge that number operators commute with themselves.

Of course, you will get full marks if you write ”I spent 30 minutes on this part of the problem,

and could not complete it.”

[As an aside – the rotations form a group structure. The group is often labeled SU(2) as it is

locally isomorphic to the 2 × 2 unitary, unimodular, matrices. One can do a similar trick of

finding representations of SU(3) by looking at the the states of a 3-dimensional harmonic oscillator.

SU(3) is important as it is one of the symmetries of the standard model of particle physics. The

degeneracies of the 3D harmonic oscillator are: 1, 3, 6, 10, 15... and this construction explicitly

produces representations of SU(3) with those dimension. It turns out that this trick does not

exhaustively enumerate the representations of SU(3). For example, when we talk about Mesons,

we will see that there are 8-dimensional representations of SU(3).]

3.6. Suppose we have a slightly anisotropic oscillator: ωx = ω0 + δ, ωy = ω0 − δ. The frequency

δ quantifies the breaking of the symmetry between x and y. In particular, it means that classical

trajectories are no longer closed.

Make a plot of E/~ω0 vs δ/ω0 for the 15 lowest energy states. Go from δ = 0 to δ = 0.2ω0. Properly
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label your axes. Describe qualitatively how the energy levels respond to breaking the symmetry.

Solution 3.6 (5 points). The anisotropy completely breaks the degeneracies of the 2D harmonic

oscillator, splitting each originally degenerate multiplet into sets of states with evenly spaced

energies proportional to δ.

0.00 0.05 0.10 0.15 0.20
0

1

2

3

4

5

6

δ /ω0

E
/ℏ
ω
0
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Problem 4. Atomic physicists can excite atoms into very high energy orbits. These highly excited

atoms are relatively stable, and are known as “Rydberg atoms.” Here you will estimate their size.

4.1. What is the degeneracy of the n = 137 level in Hydrogen? Show your reasoning.

Solution 4.1 (4 points). In the n’th energy level, there are states with orbital angular momentum

quantum number l running over the integers from 0 to n − 1. For each l there are 2l + 1 states

m = −l,−l + 1, ...,+l. Therefore, the total number of orbital states is:

n−1∑
l=0

(2l + 1) =
n∑

l=1

(2l − 1) = n(n+ 1)− n = n2. (81)

On top of this there are two electron spin states, meaning that the degeneracy is given by:

Degeneracy = 2n2 = 37538 (82)

4.2. What is the energy of a Hydrogen in the n = 137 level (in eV)? Take your origin of energy so

that ionized Hydrogen has energy E = 0.

Solution 4.2 (2 points). The energy of the n’th level of a Hydrogen atom is given by

En = −1 Ry

n2
, (83)

where 1 Ry = 13.6 eV is the ionization energy of Hydrogen. Therefore, for n = 137,

E137 = −7.2× 10−4 eV. (84)

4.3. High energy states like this are quite “classical,” meaning one can understand them by classical

reasoning. Consider a classical particle of mass me executing a circular orbit in an energy potential

V (r) = −e2/(4πε0r). What is the energy of such a classical particle with radius r. Choose the

origin of energy so that a stationary electron at r = ∞ would have zero energy. [Don’t forget to

include the kinetic energy from the orbiting.]

Solution 4.3 (3 points). The easiest approach is to use the Virial theorem, KE + PE = PE/2.

Let’s first prove that theorem:

∂rV (r) = Fcentrip =
mv2

r
=

2KE

r
(85)

=⇒ KE =
r

2
∂rV (r) =

e2

8πε0r
(86)

= −PE

2
. (87)

Therefore

E = − e2

8πε0r
(88)

-10



4.4. By comparing these expressions, estimate the size (in Angstroms) of a Rydberg atom in the

n = 137 level.

Solution 4.4 (2 points). Combining Eqs. (84) with (88), we get

r =
1

2

e2

4πε0~c
1

7.2× 10−4
~c
eV

(89)

=
1

2

1

137

1

7.2× 10−4
× 1.97× 10−7 m (90)

= 10−6 m = 104 Å. (91)

4.5. This classical reasoning becomes less accurate for smaller values of n, but since it is dimen-

sionally correct, it gives the right order of magnitude. What size (in Angstroms) do you get if you

repeat with n = 1?

Solution 4.5 (2 points). With n = 1 we get:

r =
1

2

1

137

1

13.6
× 1.97× 10−7 m (92)

= 0.5 Å, (93)

which is surprisingly good!

Problem 5. The following wavefunction describes two particles in one-dimension

ψ(x1, x2) = A
[
exp(−(x1 − a)2/d2 − (x2 + a)2/d2)− exp(−(x2 − a)2/d2 − (x1 + a)2/d2)

]
, (94)

where A is a normalization constant, and a, d are lengths

5.1. What are the dimensions of A?

Solution 5.1 (2 points). Since the wavefunction is normalised as

1 =

∫
dx1dx2|ψ|2 =

∫
dx1dx2|A|2

[
e−

(x1−a)2

d2
− (x2+a)2

d2 − e−
(x2−a)2

d2
− (x1+a)2

d2

]2
, (95)

we expect A to have dimension of 1
length .

5.2. Can this wavefunction describe two identical particles? If so, would their statistics be fermionic

or bosonic?
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Solution 5.2 (2 points). Let’s see what happens when we swap x1 and x2

ψ = A

(
e−

(x1−a)2

d2
− (x2+a)2

d2 − e−
(x2−a)2

d2
− (x1+a)2

d2

)
→ A

(
e−

(x2−a)2

d2
− (x1+a)2

d2 − e−
(x1−a)2

d2
− (x2+a)2

d2

)
= −ψ

(96)

Therefore, this wavefunction can describe two identical particles with fermionic statistics.

5.3. What is the probability that particle one is in an interval of width dx, which is at the origin

(x = 0)? You do not need to calculate A, and can include it in your answer.

Solution 5.3 (3 points). Since we don’t care about where particle two is, this is given by

P = dx

∫ ∞
−∞

dx2|ψ(x1 = 0, x2)|2

= dx

∫ ∞
−∞

dx2|A|2
[
e−

(0−a)2

d2
− (x2+a)2

d2 − e−
(x2−a)2

d2
− (0+a)2

d2

]2
= dx|A|2e−

2a2

d2

∫ ∞
−∞

dx2

[
e−

(x2+a)2

d2 − e−
(x2−a)2

d2

]2
= dx|A|2e−

2a2

d2

∫ ∞
−∞

dx2

(
e−

2(x2+a)2

d2 + e−
2(x2−a)2

d2 − 2e−
2x22+2a2

d2

)
= dx|A|2e−

2a2

d2

(
1 + 1− 2e−

2a2

d2

)√
π

2
d

= dx|A|2e−
3a2

d2 sinh

(
a2

d2

)
2
√

2πd

(97)

The first line receives 2 points. The third point comes from doing the integral.

5.4. What is the probability that both particles are in and interval of width dx, which is at the

origin?

Solution 5.4 (2 points). This is given by

dxdx|ψ(x1 = 0, x2 = 0)|2 = dx2|A|2
[
e−

(0−a)2

d2
− (0+a)2

d2 − e−
(0−a)2

d2
− (0+a)2

d2

]2
= 0 (98)

This is not surprising since the two fermions don’t like to occupy the same position.
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Problem 6. Given two orthonormal single-particle states φ1(x) and φ2(x), we can create a two-

fermion state

ψ(x1, x2) =
1√
2

(φ1(x1)φ2(x2)− φ1(x2)φ2(x1)) . (99)

6.1. Can we make a three particle fermion state out of these two wavefunctions? Either construct

it, or explain why it is impossible.

Solution 6.1 (2 points). The answer is no. If we have three particles in two states, at least

two of the particles need to be in the same state. There is no way to make an antisymmetric

wavefunction with two particles in the same state.

6.2. Construct the analogous three-particle state made out of single particle states φ1(x), φ2(x),

and φ3(x).

Solution 6.2 (2 points).

ψ(x1, x2, x3) =
1√
6
{φ1(x1)φ2(x2)φ3(x3) + φ2(x1)φ3(x2)φ1(x3) + φ3(x1)φ1(x2)φ2(x3)

− φ1(x1)φ3(x2)φ2(x3)− φ3(x1)φ2(x2)φ1(x3)− φ2(x1)φ1(x2)φ3(x3)}
(100)

6.3. If you have two non-interacting particles, the Hamiltonian will be

H = H1 +H2, (101)

where the Hj are all the same, but the act on different particles. For example

H1 = − ~2

2m
∂2x1

+ V (x1) (102)

H2 = − ~2

2m
∂2x2

+ V (x2). (103)

Suppose φ1 and φ2 are eigenstates of the single particle Schrodinger equation,

H1φ1(x1) = ε1φ1(x1) (104)

H2φ2(x2) = ε2φ2(x2). (105)

What then is the energy of the state in Eq. (99).
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Solution 6.3 (2 points).

Hψ = (H1 +H2){
1√
2

(φ1(x1)φ2(x2)− φ1(x2)φ2(x1))}

=
1√
2
{(H1 +H2)(φ1(x1)φ2(x2))− (H1 +H2)(φ1(x2)φ2(x1))}

=
1√
2
{(H1φ1(x1))φ2(x2) + φ1(x1)(H2φ2(x2))− φ1(x2)(H1φ2(x1))− (H2φ1(x2))φ2(x1)}

=
1√
2
{ε1φ1(x1)φ2(x2) + ε2φ1(x1)φ2(x2)− ε2φ1(x2)φ2(x1)− ε1φ1(x2)φ2(x1)}

= (ε1 + ε2)
1√
2

(φ1(x1)φ2(x2)− φ1(x2)φ2(x1))

= (ε1 + ε2)ψ

(106)

The state has energy ε1 + ε2.

Problem 7. Feedback

7.1. How long did this homework take?

7.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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