
P3317 HW from Lecture 20+21 and Recitation 12

Due Nov 20, 2018

Problem 1. Landau Levels

Here we will find the energy eigenstates a quantum mechanical particle moving in two dimensions

in a uniform magnetic field. That is we will consider the Schrodinger equation

Eψ = − ~2

2m
(∇− iqA)2 ψ, (1)

where ∇×A = B. We will take B to point in the ẑ direction, and be uniform in space. The vector

potential is not unique, we can add a divergence of any function to it. This is often described as

“gauge freedom.”

1.1. Show that

A = Λxŷ,

where Λ is a constant, corresponds to a uniform magnetic field. This is known as the Landau gauge,

and it is particularly useful for this calculation.

Solution 1.1 (2 points).

~B = ∇× ~A =


∂
∂x
∂
∂y
∂
∂z

×
 0

Λx

0

 =

 0

0

Λ

 = Λẑ (2)

1.2. Within the Landau gauge, the Hamiltonian involves ∂x, ∂y, and x. It does not depend explicitly

on y, so the momentum in the ŷ direction is a good quantum number. Thus we write

ψ(x, y) = eikyyφky(x). (3)

Plug this into Eq. (1) and get an equation for φky(x).

Solution 1.2 (3 points).

− 1

2m
(∇− iq ~A)2ψ = − 1

2m

[
∇2ψ − iq∇ · ( ~Aψ)− iq ~A · ∇ψ − q2 ~A · ~Aψ

]
= − 1

2m

[
∂2ψ

∂x2
+
∂2ψ

∂y2
− iq ∂(Λxψ)

∂y
− iqΛx∂ψ

∂y
− q2Λ2x2ψ

]
= − 1

2m

[
eikyy

∂2φky(x)

∂x2
+ (−k2

y + 2kyqΛx− q2Λ2x2)eikyyφky(x)

]
= Eeikyyφky(x)

(4)

So we have

− 1

2m

[
∂2

∂x2
− (ky − qΛx)2

]
φky(x) = Eφky(x) (5)
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1.3. You should recognize that this equation is the same equation obeyed by the wave function for

a 1D quantum harmonic oscillator. What is the frequency ω0 of the oscillator? Thinking about the

classical motion of a charged particle in a magnetic field, what is the physical significance of this

frequency?

Solution 1.3 (3 points). Redefine x′ = x − ky
qΛ . Choosing the lazy and potentially confusing

notation of φky(x′) := φky(x(x′)), we get the 1D quantum harmonic oscillator equation:

− 1

2m

∂2φky(x′)

∂x′2
+

1

2
m

(
qΛ

m

)2

x′2φky(x′) = Eφky(x′) (6)

We see that ω0 = qΛ
m . Since Bz = Λ, this is the cyclotron frequency, the angular frequency of the

circular orbit of a charged particle in a uniform magnetic field.

1.4. From your knowledge of the harmonic oscillator eigen-energies, what are the energies of all

the single particle states? Note: since E does not depend on ky, you have discovered a massive

degeneracy.

Solution 1.4 (2 points). The energies are E(n,ky) = ~ω0

(
1
2 + n

)
, independent of ky.

Problem 2. Guiding Centers

Consider a charged particle moving in 2D in a uniform magnetic field within the Landau Gauge:

H =
1

2m

[
p2
x + (py − qBx)2

]
. (7)

Use Heisenberg equations of motion to calculate the rate of change of these four quantities: X = 〈x̂〉,
Y = 〈ŷ〉, Πx = 〈px〉, and Πy = 〈p̂y − qBx̂〉. This should yield a set of four coupled differential

equations which you can solve.

Hint 1: Start with the equations of motion for Πx and Πy. These will be closed. Solve them.

Substitute the solutions into the equations for X and Y . Don’t forget your constants of integration.

Hint 2: The Heisenberg equations of motion read:

∂t〈Ô〉(t) =
1

i~

∫
dr ψ∗(x, t)(ÔĤ − ĤÔ)ψ(x, t) (8)

=
1

i~
〈[Ô, Ĥ]〉. (9)

Hint 3: In case 2D confuses you – recall x commutes with y and py.
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Hint 4: Recall the following:

[x̂, p̂] = i~ (10)

[x̂, p̂2] = 2i~p̂ (11)

[x̂, x̂] = 0 (12)

[x̂, x̂2] = 0 (13)

[p̂, x̂] = −i (14)

[p̂, x̂2] = −2i~x̂ (15)

[p̂, p̂] = 0 (16)

[p̂, p̂2] = 0. (17)
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Solution 2.1 (8 points). The commutators with the Hamiltonian are[
x̂, Ĥ

]
=

1

2m

[
x̂, p̂2

x

]
= i~

p̂x
m

(18)

[
ŷ, Ĥ

]
=

1

2m

[
ŷ, p̂2

y

]
− 2qB

2m
[ŷ, p̂y] x̂ = i~

p̂y
m
− i~qB

m
x̂ (19)[

p̂x, Ĥ
]

= −2qB

2m
[p̂x, x̂] p̂y +

q2B2

2m

[
p̂x, x̂

2
]

= i~
qB

m
p̂y − i~

q2B2

m
x̂ (20)[

p̂y − qBx̂, Ĥ
]

=
[
p̂y, Ĥ

]
−
[
qBx̂, Ĥ

]
= 0− i~qB

m
p̂x (21)

Taking expectation values on both sides, we then get the following equations of motion:

dX

dt
=

Πx

m
dY

dt
=

Πy

m
dΠx

dt
=
qB

m
Πy

dΠy

dt
= −qB

m
Πx

(22)

Let’s solve these differential equations. Define ω = qB
m . The last two equations can be combined

to give
d2Πx

dt2
+ ω2Πx = 0

d2Πy

dt2
+ ω2Πy = 0

(23)

The general solution is

Πx = a cos(ωt) + b sin(ωt)

Πy = b cos(ωt)− a sin(ωt)
(24)

Note that the coefficients of Πy are not arbitrary relative to those of Πx, because Πx and Πy

must still satisfy the last two equations in the original system of equations.

We now solve for X and Y , using the first two equations in the original system. We find that

X = c+
a

mω
sin(ωt)− b

mω
cos(ωt)

Y = d+
b

mω
sin(ωt) +

a

mω
cos(ωt)

(25)

This describes a circular motion, centered at (c, d) of radius
√
a2+b2

mω , with angular frequency ω.

Problem 3. Maxwell’s Equations

We define the electromagnetic field tensor as

Fµν = ∂µAν − ∂νAµ (26)
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where µ, ν = t, x, y, z, and At = −φ is the scalar potential, and Ax, Ay, Az are the components of

the vector potential.

3.1. What are the following in terms of E and B: Fxt, Fyt, Fzt, Fxy, Fyz, Fzx?

Solution 3.1 (4 points). The electric field involved space-time loops, while the magnetic field

involves spatial loops: Fxt

Fyt

Fzt

 =

 ∂xAt − ∂tAx
∂yAt − ∂tAy
∂zAt − ∂tAz

 = −

 ∂x

∂y

∂z

φ−∂t

 Ax

Ay

Az

 = −∇φ−∂t ~A = ~E =

 Ex

Ey

Ez

 (27)

 Fyz

Fzx

Fxy

 =

 ∂yAz − ∂zAy
∂zAx − ∂xAz
∂xAy − ∂yAx

 = ∇× ~A = ~B =

 Bx

By

Bz

 (28)

3.2. Consider the quantity

Λxyz = ∂xFyz + ∂yFzx + ∂zFxy. (29)

By writing F in terms of A, show that Λxyz = 0. This should be part of one of Maxwell’s equations.

Which one is it?

Solution 3.2 (2 points).

Λxyz = ∂xFyz + ∂yFzx + ∂zFxy

= ∂x(∂yAz − ∂zAy) + ∂y(∂zAx − ∂xAz) + ∂z(∂xAy − ∂yAx)

= 0

(30)

This corresponds to ∇ · ~B = 0.

3.3. Consider the quantity

Λtxy = ∂tFxy + ∂xFyt + ∂yFtx. (31)

By writing F in terms of A, show that Λtxy = 0. This should be part of one of Maxwell’s equations.

You can complete that equation by looking at Λtyz and Λtyz (but you do not need to).

Solution 3.3 (2 points).

Λtxy = ∂tFxy + ∂xFyt + ∂yFtx

= ∂t(∂xAy − ∂yAx) + ∂x(∂yAt − ∂tAy) + ∂y(∂tAx − ∂xAt)
= 0

(32)

This corresponds to part of ∂t ~B +∇× ~E = 0.
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We will not prove it here, but it turns out that in this notation the other two Maxwell equations

are

∂xFxt + ∂yFyt + ∂zFzt = 0 (33)

−∂tFtx + ∂yFyx + ∂zFzx = 0 (34)

−∂tFty + ∂xFxy + ∂zFzy = 0 (35)

−∂tFtz + ∂xFxz + ∂yFyz = 0 (36)

(37)

Problem 4. Goldstone mode

Consider the following wave equation

∂2
t φ− ∂2

xφ−m2φ+ λ2|φ|2φ = 0. (38)

This is not a gauge theory.

4.1. Linearize Eq. (38) about φ = φ0 = m/λ.

Solution 4.1 (4 points).

∂2
t (φ0 + a+ ib)− ∂2

x (φ0 + a+ ib)−m2 (φ0 + a+ ib) + λ2 |φ0 + a+ ib|2 (φ0 + a+ ib) = 0 (39)

∂2
t a+ i∂2

t b− ∂2
xa− i∂2

xb−m2 (a+ ib) + 3m2a+ im2b = 0. (40)

Taking the real and imaginary parts gives:(
∂2
t − ∂2

x + 2m2
)
a = 0 (41)(

∂2
t − ∂2

x

)
b = 0. (42)

4.2. What are the spectra of excitations? You should find one massive (gapped) mode. You will

also find a gapless mode – the Goldstone mode.

Solution 4.2 (4 points). Substituting in a = a0e
ikx−iωt gives a dispersion relation:

ω2 = k2 + 2m2 (43)

implying that this mode has a mass
√

2m, while for b we get:

ω2 = k2 (44)

which is a massless mode.

This is a generic result. Whenever you have a continuously degenerate ground state, you will have

a gapless mode. For example, in a crystal there is a continuous degeneracy corresponding to where
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the first atom sits. Once you specify its location you know where all of them are. Thus a crystal

should have a gapless mode. It in fact has 3 gapless modes: the two transverse acoustic phonons,

and a single longitudinal acoustic phonon.

Problem 5. Feedback

5.1. How long did this homework take?

5.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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