
P3317 HW from Lecture 24+25 and Recitation 13

Due Nov 27, 2018

Problem 1. The Higgs Mechanism in 1+1 dimensional Quantum Electrodynamics

In lecture we explicitly went through a calculation of the Higgs mechanism for 2+1 dimensional

scalar quantum electrodynamics. Recall the Higgs mechanism describes the physics of a gauge field

coupled to a “Higgs” field. When the Higgs field acquires a finite mean value, the gauge modes

become gapped. This is the model used to explain the masses of the W and Z bosons in the theory

of the weak interactions. Here I will have you go through the same argument in 1+1 dimension.

We will use x to label the spatial dimension, and t the time dimension. We have one scalar field

φ(x, t), the Higgs field. We will have two gauge fields: At and Ax. In one spatial dimension there

is no analog of a magnetic field, but you can have an electric field. It is defined by

E = ∂tAx − ∂xAt. (1)

In lecture we used the symbol Sy for this quantity.

We will start with the simplest case where the Higgs field obeys a relativistic wave equation

(∂t − iAt)2φ− (∂x − iAx)2φ+m2φ = 0. (2)

The gauge fields obey “Maxwell” equations

∂xE +
1

2
[iφ∗(∂t − iAt)φ− iφ(∂t + iAt)φ

∗] = 0 (3)

−∂tE −
1

2
[iφ∗(∂x − iAx)φ− iφ(∂x + iAx)φ∗] = 0

1.1. Show that these three equations [Eqs. (2)-(15)] possess a Gauge symmetry. That is they are

invariant under the transformation

Ax → Ax + ∂xΛ (4)

At → At + ∂tΛ (5)

φ → eiΛφ. (6)

Hint: First show that

(∂t − i(At + ∂tΛ))eiΛφ = eiΛ(∂t − iAt)φ.

Next define ψ = (∂t − iAt)φ, and reuse your first result:

(∂t − i(At + ∂tΛ))eiΛψ = eiΛ(∂t − iAt)ψ.

Finally, putting these together yields

(∂t − i(At + ∂tΛ))2eiΛφ = eiΛ(∂t − iAt)2φ.

With these identities (and the similar ones for ∂x) the arguments are straightforward.
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Solution 1.1 (4 points). Following the hint, we look at how the covarient derivative behaves

under a gauge transform.

(∂t − i(At + ∂tΛ)) eiΛφ = eiΛ (∂t − iAt − i∂tΛ)φ+
(
∂te

iΛ
)
φ (7)

= eiΛ (∂t − iAt − i∂tΛ + i∂tΛ)φ (8)

= eiΛ (∂t − iAt)φ. (9)

Typographically replacing t with x yields.

(∂x − iAx)φ
Λ
= eiΛ (∂x − iAx)φ. (10)

We can then apply this twice to get

(∂t − iAt − i∂tΛ) [(∂t − iAt − i∂tΛ) eiΛφ] = (∂t − iAt − i∂tΛ) [eiΛ (∂t − iAt)φ] (11)

= eiΛ (∂t − iAt) [(∂t − iAt)φ]. (12)

Thus if φ obeys Eq. (2), then for any arbitrary Λ(x, t), one has eiΛφ obeys

(∂t − i(At + ∂tΛ
2
)e
iΛφ− (∂x − i(Ax + ∂xΛ)2eiΛφ+m2eiΛφ = 0. (13)

Finally, in principle we should show that the electric field is invarient under the gauge transfor-

mation.

∂tAx − ∂xAt → ∂tAx + ∂t∂xΛ− ∂xAt − ∂x∂tΛ (14)

= ∂tAx − ∂xAt

Thus Eq. (15) implies

∂xE +
1

2

[
ie−iΛφ∗(∂t − i(At + ∂tΛ))eiΛφ− ieiΛφ(∂t + i(At + ∂tΛ)e−iΛφ∗

]
= 0 (15)

−∂tE −
1

2

[
ie−iΛφ∗(∂x − i(Ax + ∂xΛ))eiΛφ− ieiΛφ(∂x + i(Ax + ∂xΛ))e−iΛφ∗

]
= 0,

which expresses the desired symmetry.

Aside: a neat trick

A clever way to write this (which was very briefly mentioned in class, and is implicit in the hint)

is:

Dt → eiΛDte
−iΛ (16)

such that:

Dtφ→ eiΛDte
−iΛeiΛφ = eiΛDtφ (17)

D2
t φ→ eiΛDte

−iΛeiΛDte
−iΛeiΛφ = eiΛD2

t φ (18)

and similarly for the x component. This is why Dt ≡ (∂t − iAt) is called a ‘covariant derivative’:

Dtφ transforms in the same way as φ does under a gauge transformation, while the standard

derivative ∂tφ does not. The covariant derivative is many ways a simpler object than an ordinary

derivative.
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1.2. Linearize Eq. (2) about φ = Ax = At = 0.

Solution 1.2 (2 points). The linearized equations are:

(∂2
t − ∂2

x +m2)φ = 0 (19)

∂xE = 0 (20)

∂tE = 0 (21)

The last two equationsa describe a constant electric field (in free space), and the first is a wave

equation for φ with a mass term. Note that they are completely decoupled, and so we can solve

them seperately.

aThese are the 1+1 dimensional versions of Coulomb’s and Faraday’s laws in free space

1.3. Find the normal modes of this linearized equations. IE. Write φ(x, t) = φeikx−iωt, and find

what ω is allowed for a given k. How many independent modes do we have at each k? These

correspond to particles and antiparticles (like electrons and positrons – but here they are bosonic).

As a side note, φ is a complex valued field so for fixed k0, ω0, each of the following complex

exponentials are independent: ei(k0x−ω0t), ei(k0x+ω0t), ei(−k0x+omega0t), ei(−k0x−ω0t). If φ was real

valued things would be different: re(ei(k0x−ω0t)) = re(ei(−k0x+ω0t)).

Solution 1.3 (2 points). Making the subsitution φ(x, t) = φeikx−iωt, we get:(
−ω2 + k2 +m2

)
φeikx−iωt = 0. (22)

This is solved for:

ω2 = k2 +m2. (23)

Since φ is a complex field, it has one complex degree of freedom, which is two real degrees of freedom

(independent modes) for each k. That is, Re(φ) and Im(φ) are independent modes. Equivalently,

the positive and negative frequency solutions to the above equation can be regarded as the two

independent modes.

1.4. Write the “Maxwell” equations Eq. 15 in terms of the gauge fields.

Solution 1.4 (2 points). Maxwell’s equations can be written:

∂x∂tAx − ∂2
xAt +

1

2
[iφ∗ (∂t − iAt)φ− iφ (∂t + iAt)φ

∗] = 0 (24)

−∂t∂xAt + ∂2
tAx −

1

2
[iφ∗ (∂x − iAx)φ− iφ (∂x + iAx)φ∗] = 0 (25)

1.5. Linearize these equations about φ = Ax = At = 0.
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Solution 1.5 (2 points). Linearized about φ = Ax = At = 0 leaves just the free-space Maxwell’s

equations:

∂x∂tAx − ∂2
xAt = 0 (26)

∂t∂xAt − ∂2
tAx = 0 (27)

1.6. Write At(x, t) = Ate
ikx−iωt and Ax(x, t) = Axe

ikx−iωt. Substitute these into the linearized

equations to find a matrix equation (
? ?

? ?

)(
Ax

At

)
= 0. (28)

Rearrange the equations so that the matrix is symmetric.

Solution 1.6 (3 points). These equations can be written:(
−∂2

x ∂x∂t

∂t∂x −∂2
t

)(
At

Ax

)
= 0. (29)

Substrituting in Ax,y = eikx−iωtAx,y gives:(
k2 ωk

ωk ω2

)(
At

Ax

)
= 0. (30)

We write this as a symmetric matrix because we want to turn the problem of simultaneous

equations into an eigenvalue problem. In particular, we want to decompose some arbitrary vector

of At, Ax in to eigenvectors of the matrix above. If we can make such a decomposition, then the

equation above is equivalent as saying that the corresponding eigenvalues are zero. Symmetric

eigenvalue problems are easier to solve.

1.7. Find the eigenvalues and eigenvectors of this matrix. You should find one vector where the

eigenvalue is always zero, and another where the eigenvalue is never zero.

Solution 1.7 (3 points). There is an eigenvector:

N
(
ω −k

)T
(31)

with eigenvalue 0, and an eigenvector

N
(
k ω

)T
(32)

with eigenvalue k2 + ω2. Note that there is no non-trivial solution to the equation k2 + ω2 = 0

for real ω, k.

1.8. What is the physical significance of the eigenvector with zero eigenvalue? What is the electric

field E for this mode? [E is the only physical field – there is no magnetic field in 1D.]
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Solution 1.8 (3 points). The eigenvector with zero eigenvalue corresponds to an E field given

by:

E = N
(
−k∂teikx−iωt − ω∂xeikx−iωt

)
= iNeikx−iωt (kω − ωk) = 0. (33)

That is, this mode has no physical significance, it is ‘pure gauge’ and does not contribute to any

observable dynamics. ‘Pure gauge’ means that it is a gauge transformation of At = Ax = 0.

Clearly this particular choice of gauge field does not correspond to a physical travelling wave.

Alternatively, consider a gauge transformation with parameter Λ = eikx−iωt:(
At

Ax

)
=

(
0 + ∂te

ikx−iωt

0 + ∂xe
ikx−iωt

)
= −i

(
ω

−k

)
eikx−iωt. (34)

We therefore see that this mode is just a gauge transformation on A = 0.

1.9. In 3D we have 2 propegating modes for each k – these are the two transverse polarizations of

the photon. In 2D we only found one – there is only one transverse direction. How many photon

modes do we find in this 1D model?

Solution 1.9 (1 point). In 1D, there are no transverse directions. There are no possible polariza-

tions for the photon. There therefore cannot be any physical modes associated with the photon.

This is indeed what we found, when we showed that there are no real solutions to the equations

of motion of the electromagnetic potentials with the form of a wave.

Now that we understand this simple model, we are ready to study a less trivial model which

illustrates the Higgs mechanism. Lets replace Eq. (2) with

(∂t − iAt)2φ− (∂x − iAx)2φ−m2φ+ λ2|φ|2φ = 0. (35)

1.10. Now linearize the Higgs equation Eq. (35) about φ0 = m/λ, and about Ax, At = 0. [Write

φ = φ0 + a + ib.] Take the real and imaginary parts of the equation for φ, so that you have

two real equations. Note: you must do this separation into real and imaginary parts now, before

question 1.11 where you take the Fourier transform. You will get the wrong answer if you take the

Fourier transform first.
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Solution 1.10 (4 points). Let’s go term by term. The first term becomes

(∂t − iAt)2 (φ0 + a+ ib) = ∂2
t a+ i∂2

t b− iφ0∂tAt + ... (36)

where the ... corresponds to quadratic and higher order terms. Similarly for the second term:

− (∂x − iAx)2 (φ0 + a+ ib) = −∂2
xa− i∂2

xb+ iφ0∂xAx + ... (37)

The third term is simply:

−m2 (φ0 + a+ ib) = −m2φ0 −m2a− im2b, (38)

and the final term:

λ2 |φ0 + a+ ib|2 (φ0 + a+ ib) = λ2φ3
0 + 3λ2φ2

0a+ iλ2φ2
0b+ ... (39)

Putting them all together gives:

∂2
t a+ i∂2

t b− iφ0∂tAt − ∂2
xa− i∂2

xb+ iφ0∂xAx + 2m2a = 0 (40)

where some terms cancelled due to the value of φ0. Taking the real and imaginary parts gives:(
∂2
t − ∂2

x + 2m2
)
a = 0 (41)(

∂2
t − ∂2

x

)
b+ φ0 (∂xAx − ∂tAt) = 0 (42)

1.11. Write a(x, t) = aeikx−iωt, b(x, t) = beikx−iωt, At(x, t) = Ate
ikx−iωt and Ax(x, t) = Axe

ikx−iωt.

Substitute these into the linearized Higgs equation. One equation should decouple, the other will

connect b, At and Ax.

Solution 1.11 (2 points). Making the given substitutions, we get:

a
(
∂2
t − ∂2

x + 2m2
)
eikx−iωt = 0 (43)

b
(
∂2
t − ∂2

x

)
eikx−iωt + φ0 (Ax∂x −At∂t) eikx−iωt = 0 (44)

=⇒ a
(
ω2
a − k2

a − 2m2
)

= 0 (45)

b
(
−ω2 + k2

)
+ iφ0 (Axk +Atω) = 0 (46)

1.12. Linearize the Maxwell equations about φ0 = m/λ, and about Ax, At = 0.
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Solution 1.12 (3 points). First let’s linearize just one term:

iφ∗ (∂t − iAt)φ = i (φ0 + a+ ib)∗ (∂t − iAt) (φ0 + a+ ib) (47)

= φ2
0At − φ0∂tb+ iφ0∂ta+ ... (48)

The expressions for the other terms are very similar:

−iφ (∂t + iAt)φ
∗ = φ2

0At − φ0∂tb− iφ0∂ta+ ... (49)

iφ∗ (∂x − iAx)φ = φ2
0Ax − φ0∂xb+ iφ0∂xa+ ... (50)

−iφ (∂x + iAx)φ∗ = φ2
0Ax − φ0∂xb− iφ0∂xa+ ... (51)

Putting these expressions together into Maxwells equations gives the linearized form:

∂x∂tAx − ∂2
xAt + φ2

0At − φ0∂tb = 0 (52)

∂t∂xAt − ∂2
tAx − φ2

0Ax + φ0∂xb = 0 (53)

1.13. Write a(x, t) = aeikx−iωt, b(x, t) = beikx−iωt, At(x, t) = Ate
ikx−iωt and Ax(x, t) = Axe

ikx−iωt.

Substitute these into the linearized Higgs equation.

Solution 1.13 (2 points). Substituting in the wave ansatz gives:(
Ax∂x∂t −At∂2

x + φ2
0At − φ0b∂t

)
eikx−iωt = 0 (54)(

At∂t∂x −Ax∂2
t − φ2

0Ax + φ0b∂x
)
eikx−iωt = 0 (55)

and so

ωkAx +
(
k2 + φ2

0

)
At + iωφ0b = 0 (56)

ωkAt +
(
ω2 − φ2

0

)
Ax + ikφ0b = 0 (57)

1.14. Combine the results of problem 1.11 and 1.13 as a matrix equation ? ? ?

? ? ?

? ? ?


 Ax

At

b

 = 0. (58)

Rearrange things so that this matrix is Hermitian.
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Solution 1.14 (3 points). These can be summarized in the matrix equation:ω2 − φ2
0 ωk ikφ0

ωk k2 + φ2
0 iωφ0

ikφ0 iωφ0 k2 − ω2


AxAt
b

 = 0. (59)

In order to get it in to the same form as in the lecture notes, we can multiply the equation coming

from the last row of the matrix by an overall negative sign, which is just convention and doesn’t

change the physics: ω2 − φ2
0 ωk ikφ0

ωk k2 + φ2
0 iωφ0

−ikφ0 −iωφ0 ω2 − k2


AxAt
b

 = 0. (60)

1.15. Find the eigenvalues and eigenvectors of this matrix. You should find one mode where the

eigenvalue is always zero, one where the eigenvalue is never zero, and a third which has an eigenvalue

which is zero when ω2 = k2 + φ2
0. This last mode is the massive gauge boson (the analog of the W

boson).

Solution 1.15 (3 points). I used Mathematica to get the following eigenvectors and eigenvalues:

Eigenvector Eigenvalue(
ik, −iω, φ

)
0(

ikω, i(k2 + φ2
0), ωφ0

)
ω2 + k2 + φ2

0 (61)(
−iφ0, 0, k

)
ω2 − k2 − φ2

0

where the eigenvectors are only defined up to normalization. As expected, one eigenvalue is always

zero (and corresponds to a gauge transformation, one is never zero, and the last is the massive

gauge field.

Problem 2. Mass of the Higgs boson

The mass of the W boson is 80GeV/c2.

2.1. Given our argument about the Higgs mechanism, can you say anything about the Higgs boson

mass? [What is the expression for the mass of the gauge fields and the mass of the Higgs. Are

there any free parameters?]

Hint: This is actually a trick question. The conventional wisdom is that you can’t actually deter-

mine the mass of the Higgs from the mass of the W. Why is that so?

[Interestingly enough, the experimental mass of the Higgs is 125GeV/c2, which is in the same

ballpark as the W mass – making one think there is actually a connection.]
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Solution 2.1 (2 points). The equation of motion for the Higgs φ had two parameters, λ and m,

and in problem 1 we saw that the mass it gave to the photon in Higgsed QED is mγ = m/λ. In

the Standard Model, the W and Z bosons get their masses by a similar mechanism. This formula

means that a measurement of the W boson mass only tells you the value of the ratio m/λ. The

Higgs mass is given by mh =
√

2m (The Higgs is the particle a in Eq. 41), which remains a free

parameter.

Problem 3. Linear Combination of Atomic Orbitals

One way of modeling electronic structure in crystals is to imagine that the wavefunction of an

electron is made from a linear combination of the atomic orbitals on each of the nuclei making up

the solid. The simplest such model is to just use one orbital on each nucleus.

If rj are the locations of each of the nuclei, then the ansatz is

ψ(r) =
∑
j

ψjφ(r − rj), (62)

where ψj are just a bunch of numbers, and φ(r) is the wavefunction of an orbital for a nucleus at

the origin. [For concreteness you can imagine that φ(r) ∼ e−α|r| is something like the 1s orbital of

hydrogen. Regardless, we will imagine that we know φ(r) from some other calculation.]

Treating ψ as a variational wavefunction, the energy is

E =

∫
dr ψ∗(r)Hψ(r)∫
dr ψ∗(r)ψ(r)

(63)

=

∑
ij Hijψ

∗
i ψj∑

ij Λijψ∗i ψj
(64)

where

Hij =

∫
dr φ∗(r − ri)Hφ(r − rj) (65)

Λij =

∫
dr φ∗(r − ri)φ(r − rj) (66)

3.1. Prove that Hij depend on i and j only through the displacement ri− rj . Similarly, prove that

Λij also only depends on ri − rj .
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Solution 3.1 (4 points).

Hij =

∫ ∞
−∞

drψ(r − ri)Hψ(r − rj)

=

∫ ∞
−∞

drψ(r − ri)
(
− 1

2m

∂2

∂r2
+ V (r)

)
ψ(r − rj)

=

∫ ∞
−∞

d(r′ + ri)ψ(r′)

(
− 1

2m

∂2

∂(r′ + ri)2
+ V (r′ + ri)

)
ψ(r′ + ri − rj)

=

∫ ∞−ri
−∞−ri

dr′ψ(r′)

(
− 1

2m

∂2

∂r′2
+ V (r′)

)
ψ(r′ + ri − rj)

=

∫ ∞
−∞

drψ(r)

(
− 1

2m

∂2

∂r2
+ V (r)

)
ψ(r + ri − rj)

(67)

In the third line, we introduced a change of variables r′ = r − ri. In the fourth line, we used the

fact that V (r) is periodic, so V (r′) = V (r′+ ri). In the last line, we renamed the dummy variable

r′ back to r.

Similarly,

Λij =

∫ ∞
−∞

drψ(r − ri)ψ(r − rj)

=

∫ ∞
−∞

d(r′ + ri)ψ(r′)ψ(r′ + ri − rj)

=

∫ ∞−ri
−∞−ri

dr′ψ(r′)ψ(r′ + ri − rj)

=

∫ ∞
−∞

drψ(r)ψ(r + ri − rj)

(68)

We see that both Hij and Λij contains only the combination ri − rj .

3.2. What happens to Hij and Λij l when ri and rj are far apart?

Solution 3.2 (1 point). If ri and rj are very far apart, the overlap between the wavefunctions

φ(r − ri) and φ(r − rj), and hence Hij and Λij , becomes very small.

To leading order we only need to keep diagonal terms, and terms where the two atoms are nearest

neighbors:

Hij ≈


E0 i = j

−∆ i, j are neighbors

0 otherwise

(69)

Λij ≈


1 i = j

ε i, j are neighbors

0 otherwise

(70)
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Expanding to first order in the small parameters ε and ∆, we have

E =
E0
∑

i ψ
∗
i ψi − t

∑
〈i,j〉(ψ

∗
i ψj + ψ∗jψi)∑

i ψ
∗
i ψ

(71)

t = εE0 + ∆, (72)

where the 〈i, j〉 indicates that we only sum over nearest neighbor pairs. Specializing to one dimen-

sion, this is

E =
E0
∑

i ψ
∗
i ψi − t

∑
i

(
ψ∗i+1ψi + ψ∗i ψi+1

)∑
i ψ
∗
i ψi

. (73)

To optimize this wavefunction, we want to set

∂E

∂ψ∗j
= 0. (74)

Note that this is just a regular partial derivative: ψ∗j is just an ordinary variable like x.

3.3. Prove that
∂E

∂ψ∗j
=
−Aψj+1 −Aψj−1 + (E0 − E)ψj∑

i ψ
∗
i ψi

, (75)

and find A. [You may find it useful to look back at the lecture notes on the ”Variational Principle”

lecture, and on the ”Hartree” lecture, both of which took similar derivatives.]

Solution 3.3 (3 points). Some useful results:

∂

∂ψ∗j

(∑
i

ψ∗i ψi

)
=
∑
i

δi,jψi = ψj

∂

∂ψ∗j

(∑
i

ψ∗i+1ψi

)
=
∑
i

δi+1,jψi =
∑
i

δi,j−1ψi = ψj−1

∂

∂ψ∗j

(∑
i

ψ∗i ψi+1

)
=
∑
i

δi,jψi+1 = ψj+1

(76)

Therefore, we find that

∂E

∂ψ∗j
=

∂(E0
∑

i ψ
∗
i ψi−t

∑
i(ψ

∗
i+1ψi+ψ

∗
i ψi+1))

∂ψ∗
j∑

i ψ
∗
i ψi

−

(
E0
∑

i ψ
∗
i ψi − t

∑
i(ψ
∗
i+1ψi + ψ∗i ψi+1)

) ∂(∑i ψ
∗
i ψi)

∂ψ∗
j

(
∑

i ψ
∗
i ψi)

2

=
E0ψj − t(ψj−1 + ψj+1)∑

i ψ
∗
i ψi

−
(
E0
∑

i ψ
∗
i ψi − t

∑
i(ψ
∗
i+1ψi + ψ∗i ψi+1)

)
ψj

(
∑

i ψ
∗
i ψi)

2

=
−t(ψj−1 + ψj+1)∑

i ψ
∗
i ψi

+
(E0 − E)ψj∑

i ψ
∗
i ψi

=
−tψj+1 − tψj−1 + (E0 − E)ψj∑

i ψ
∗
i ψi

(77)

Hence we see that A = t.
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Setting this expression equal to zero, we are left with the eigenvalue problem

−Aψj+1 −Aψj−1 + E0ψj = Eψj , (78)

which is the same form as our finite difference approximation to the Schrodinger equation.

3.4. We can solve this infinite set of equations with the following ansatz:

ψj = αeikaj (79)

where a is the spacing between the nuclei, k is a parameter, and α is chosen for normalization.

Plugging this ansatz into Eq. (78), find a relationship between E and k. Leave your answer in

terms of A.

Solution 3.4 (3 points). Plugging in the ansatz, we have

α
(
−Aeika(j+1) −Aeika(j−1) + E0e

ikaj
)

= α
(
−2Aeikaj cos(ka) + E0e

ikaj
)

= αEeikaj
(80)

Dividing by common factors on both sides, this reduce to the relation

E = E0 − 2A cos(ka) (81)

Problem 4. Feedback

4.1. How long did this homework take?

4.2. Which of the following words come to mind when you think about this homework (feel free to

add your own words if you have something better): frustrating, fun, tedious, insightful, hard, easy,

useful, useless, fair, unfair
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